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Facial Age and Expression Synthesis Using Ordinal
Ranking Adversarial Networks
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Abstract— Facial image synthesis has been extensively
studied, for a long time, in both computer graphics and computer
vision. Particularly, the synthesis of face images with varying
ages, expressions and poses has received an increasing attention
owing to several real-world applications. In this paper, facial
age and expression synthesis are addressed. While previous and
current research papers on facial age synthesis mostly adopt an
age span of 10 years, this paper investigates face aging with a
shorter time span. For expression synthesis, given a neutral face,
we work on synthesizing faces with varying expression intensities
(e.g., from zero to high). Note that both human ages and expres-
sion intensities are inherently ordinal. To fully exploit this ordinal
nature, we devise ordinal ranking generative adversarial net-
works (ranking GAN). For each face, a one-hot label is assigned
to define its age range/expression intensity. By exploiting the
relative order information among age ranges/expression intensi-
ties, a binary ranking vector is further computed for each face.
In ranking GAN, one-hot labels are used as the condition of the
generator for synthesizing faces with target age groups/expression
intensities. Moreover, we add a sequence of cost-sensitive ordinal
rankers on top of several multi-scale discriminators, with the aim
of minimizing age/intensity rank estimation loss when optimizing
both the generator and discriminators. In order to evaluate
the proposed ranking GAN, extensive experiments are carried
out on several public face databases. As demonstrated by the
experimental testing, this ranking scheme performs well even
when the amount of available labeled training data is limited. The
reported experimental results well demonstrate the effectiveness
of ranking GAN on synthesizing face aging sequences and faces
with varying expression intensities.

Index Terms— Face image aging, facial expression synthesis,
generative adversarial networks, ordinal ranking.
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I. INTRODUCTION

UNDERSTANDING and manipulating face images is an
extensively studied topic in both vision and graphics

communities. Particularly, face aging and expression synthesis
have received tremendous attention. Applications like finding
lost/wanted people, human-computer interaction, face recog-
nition, animation, human cosmetic study and entertainment
can all benefit from them. Facial age synthesis aims to
predict future faces (i.e., age progression) or construct former
faces (i.e., age regression) of an individual. The fact that
aging causes pronounced changes in both the appearance
and anatomy of human faces makes modelling this process
a very difficult problem. Similarly, semantic manipulation of
facial expressions is challenging due to the non-linear facial
geometry variation caused by different expressions. Here,
we list two common challenging issues faced by today’s age
and expression synthesis techniques. First, in order to well
capture the aging/expression mechanism of facial features,
a good algorithm generally needs sufficient labeled training
data. However, existing databases either include very few
people or provide very few personal face images. Second,
different individuals usually have different aging/expression
processes. For example, face aging can be affected by not
only internal factors (e.g., gene, gender and ethnicity) but
also external factors (e.g., working environment and liv-
ing style). This diversity makes investigating the general
aging/expression mechanism tougher. Although rather compli-
cated, they have received significant attention. There has been
great progress achieved on both topics [1]–[4]. Along with
the rapid development of deep learning in various fields, using
deep neural networks (DNN) to train face synthesis models has
attracted increasing attention. In particular, generative adver-
sarial networks (GANs) have been actively investigated and
achieved impressive results for both face aging and expression
synthesis [5].

It should be noted that most of the existing facial age
synthesis literature focuses on long-term aging. For instance,
the time span between neighbouring adult age groups in recent
methods was always set to 10 years [6]–[13]. Simulating
face aging with a shorter time span instead received far less
attention. Suppose we use an age span of 10, and need to
predict the facial appearance of a teenager at the age of 30.
Should we apply the model of 20 ∼ 30 or 30 ∼ 40 to the
teenager? Note that either model uses data with age differing
by even 10 years from 30 for training. As a result, neither
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of them could provide an accurate prediction of the subject’s
facial appearance. On the other hand, by adopting a shorter
time span, a more accurate model of the facial aging process
could be devised, leading to a more accurate prediction of the
subject’s appearance at the target age. However, using a shorter
time span suffers from the decrease in training data and thus
is prone to generate images with lower quality. For example,
if we use an age span of 10, then we have sufficient training
data for each age range/group. If we change the span to 5, there
will be only about half left for each age range/group. In this
study, we address this more challenging age synthesis task,
including both age progression and regression. Specifically,
we concentrate on synthesis over an age span of 5 years.

For expression synthesis, given a neutral face, existing work
generally centers on synthesizing faces with 7 prototypical
expressions, categorized as happiness, sadness, surprise, anger,
fear, disgust and contempt. However, it is sometimes insuffi-
cient for real-world applications when we need further a happy
face with a certain degree of strongness/strength. Similarly to
short-term aging, synthesizing faces with varying intensities
suffers from the lack of labeled data (i.e., data annotated with
expression intensities). As a result, some research attempts
to seek help from unsupervised techniques, e.g., by manually
setting the expression code [14], [15] or linear interpolation
of facial geometry parameters [16]. Unsupervised methods,
however, cannot well capture facial variation caused by differ-
ent expression intensities. In [17], [18], Action Units (AU) are
investigated for continuous expression synthesis. Working in a
supervised manner, they are competent for catching expression
changes. However, they require face data labeled with AU.
In this paper, we aim to find a supervised solution which can
fully utilize limited labeled data and meanwhile effectively
capture expression variation. Given a neutral face, our task is
to synthesize an image sequence showing a certain expression
with intensity from zero to high. Specifically, we consider
4 different intensities (i.e., zero, low, medium and high).

Human ages and expression intensities are inherently ordi-
nal. They form a well-ordered set and thus have strong
interrelationship. To fully utilize the ordering property and
meanwhile take full advantage of limited labeled data, in this
paper, we resort to learning-to-rank techniques for our synthe-
sis tasks. Specifically, we present an ordinal ranking adver-
sarial network and name it ranking GAN. Given a face,
we first assign a one-hot label to it to indicate which age
group/expression intensity it belongs to. By exploiting the rel-
ative order information among different age ranges/expression
intensities, we further associate each face with a binary
ranking vector. In ranking GAN, one-hot labels are used as
the condition of the generator for synthesizing faces with
target age groups/expression intensities. In addition, we add
a sequence of cost-sensitive ordinal rankers on top of sev-
eral multi-scale discriminators, with the aim of minimizing
age/intensity rank estimation loss when optimizing both the
generator and discriminators. This ranking scheme can work
well even when training data is insufficient, since all training
samples are exploited for building each age group/intensity’s
ranker. Moreover, learning-to-rank together with cost sen-
sitivity enables our approach to well catch the correlation
among different age ranges/expression intensities. The use of
multi-scale discriminators further makes our ordinal rankers

more robust, so that aging patterns/expression variation can be
successfully captured. Experimental results on several public
face databases demonstrate the effectiveness of ranking GAN
on both capturing face aging patterns and synthesizing faces
with varying intensities.

The main contributions of this work are:
1) We investigate face aging with a shorter time span,

including both age progression and age regression.
2) We study expression synthesis with varying intensities

in a supervised manner, in order to successfully capture facial
variation caused by different intensities.

3) We present an ordinal ranking adversarial network for
age and expression synthesis, attempting to fully utilize both
the limited labeled training data and the well-ordering charac-
teristic of human ages and expression intensities. To the best
of our knowledge, this is the first attempt trying to exploit the
ordinal nature of human ages and expression intensities for
face synthesis.

4) We conduct extensive experiments to validate the
effectiveness of ranking GAN on face aging and expression
synthesis with varying intensities.

The rest of the paper is organized as follows: Section II
gives some related work. The proposed ranking GAN is
detailed in Section III. Section IV goes on to describe our
implementation details and introduce face databases used to
test ranking GAN. In Section V, we report experimental
results. Finally, we conclude the whole work and further give
some interesting future work in Section VI.

II. RELATED WORK

A. Facial Age Synthesis

In early period, researchers generally exploit the biological
structure and aging process of facial features such as cranium,
muscles, and skin [19]–[23]. For example, in [19], Ramanathan
and Chellappa developed a craniofacial growth model for
young face aging. Through investigating the anatomy structure
of facial skin, Wu et al. proposed a 3-layer dynamic skin
model to synthesize wrinkles for face aging [22]. These phys-
ical methods usually require long personal aging sequences,
so that complex modelling can be carried out. Prototype
approaches instead do not utilize much of the biological
prior knowledge [24]–[28]. They usually compute a prototype
for each aging stage. The difference between prototypes of
two aging stages is then considered as the aging pattern.
In [25], an aging transform was derived by using shape and
color differences between young and old male prototypes.
Tiddeman et al. proposed a wavelet-based method for pro-
totyping and transforming facial textures [26]. Owing to the
availability of large amount of data and powerful computa-
tional hardware, there has been growing interest in employ-
ing DNN for age synthesis. In [6], Wang et al. proposed
a recurrent neural network-based approach to model the
aging pattern between neighbouring age groups. Duong et al.
employed temporal restricted boltzmann machines for learn-
ing aging transformation [7]. Among various deep models,
GAN has attracted the most attention. In [9], Antipov et al.
introduced GAN to age synthesis tasks. Afterwards, various
GAN-based approaches have been developed. For example,
studies in [10]–[13] all made use of the image generation
ability of GAN.
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B. Facial Expression Synthesis

Early approaches on expression synthesis generally resort
to techniques in computer graphics. In [29], Blanz et al.
developed a system to create 3D animations from a single face
image or a video. They transfer facial expression of a different
person to the reconstructed face model by mapping geometric
difference vectors. In [30], Pighin et al. proposed to create
photorealistic textured 3D facial models from photographs of
a subject, and to create smooth transitions between different
expressions by morphing between different models. A second
category of methods are example-based approaches which edit
faces by either reusing sample patches of existing images
or reordering images from an existing expression dataset.
In [31], expression is mapped to a new face by comparing
the user’s face to all face images of the target person and
returning the best match. Li et al. generated facial expression
videos by retrieving frames that have similar expressions
to the input ones [32]. In [33], a system combining face
reordering with face warping was developed to edit expression
in videos. With recent development of deep learning in various
fields, researchers have turned their attention to using deep
generative models for expression synthesis. In [34], deep belief
net was adopted. Yeh et al. instead combined the generative
ability of variational autoencoders with optical flow-based face
manipulation [35]. GAN has also been successfully applied to
expression synthesis [14]–[18], [36]. For example, in [16] and
[36], facial geometry was used as a condition of the generator
for generating faces with target expressions.

C. Ordinal Ranking for Face Analysis
Ordinal ranking, also called ordinal regression, is an inter-

esting topic in machine learning community [37]. For face
analysis, it has found applications in age estimation and
expression intensity prediction. Note that the majority of
existing age estimation approaches either employ a classi-
fier to determine a coarse age range or use a regressor to
calculate the exact age value. Human ages are inherently
ordinal. They form a well-ordered set and thus have strong
interrelationship. However, classification approaches simply
treat ages as independent labels. In addition, human face
matures in different ways at different ages, e.g., craniofacial
growth in childhood and texture changes in adulthood. This
property makes the process of face aging non-stationary in
the feature space. Regression approaches consider ages as
numerical values which utilize ordinal information. However,
as manifested in [38], it is difficult for regressors to learn
non-stationary functions which best fit the mapping from
the feature space to the age space since they are prone to
overfitting. To well adopt the ordering property of human
ages, recent studies have turned to learning-to-rank approaches
[38]–[41]. In these approaches, human ages are considered as a
set of rank orders. For each age/rank order, they separate all the
faces into two groups based on whether a face is elder than the
given rank order. By doing this, they transform age estimation
into a series of binary classification problems. Given that
the cost of misclassification typically varies among differ-
ent age pairs, researchers further investigated cost-sensitive
learning [42]. Similarly to age estimation, ordinal rank-
ing has been successfully applied to expression intensity
prediction [43]–[45].

D. Generative Adversarial Networks

GAN offers a distinct and promising approach for training
image synthesis models [5]. A classical GAN consists of
a generator G and a discriminator D, which are trained
alternatively via an adversarial process. The discriminator tries
to distinguish real samples from fake ones. The generator
instead attempts to synthesize fake samples that can fool the
discriminator. GAN has achieved great success in various
image generation tasks. However, it suffers from training insta-
bility. To solve this issue, various attempts have been made,
including designing new network architectures [46], modifying
learning objectives [47], employing regularization techniques
[48] and so on. For face synthesis, the conditional GAN has
particularly been widely used [49], where the generator and
discriminator are conditioned on some extra information. Our
approach is also a conditional GAN.

III. ORDINAL RANKING ADVERSARIAL NETWORKS

The proposed approach is a GAN-based network. It consists
of a generator G and 3 multi-scale discriminators denoted
as D1, D2 and D3. We use one-hot labels as the condition
to guide the generator for synthesizing faces with target
age groups/expression intensities. Our discriminators share
the same network architecture but operate at different image
scales. Concretely, we create an image pyramid of 3 scales by
downsampling the input with a factor of 2 and 4. D1, D2 and
D3 are then trained to distinguish real faces from generated
ones at the 3 scales, resp. In addition, the 3 discriminators
undertake the task of estimating inputs’ age/intensity ranks,
by using binary ranking vectors. We achieve this by adding
a sequence of cost-sensitive ordinal rankers on top of them.
Figure 1 illustrates our approach.

A. Problem Formulation

Suppose we have a total of M age ranges/expression inten-
sities. Given a training set with N face images � = {Ii |i =
1, . . . , N}, we use hi ∈ R

M to denote the one-hot label of Ii .
By treating each age group/expression intensity as a rank,

we can get a total of M rank orders, lm = m, where m =
1, . . . , M . For an image from the m-th range/intensity, we use
lm as its representative rank. Given a face image Ii , we use
yi ∈ {l1, . . . , lM } to denote its rank order. For each rank
lm(1 ≤ m < M), we separate the training set � into two
subsets, �+

m and �−
m , as follows:
�+

m = {Ii |yi > lm},
�−

m = {Ii |yi ≤ lm}. (1)

�+
m and �−

m are then used to train an ordinal ranker which aims
to decide whether a sample’s rank is larger than lm . After this,
we can get a total of M − 1 ordinal rankers which are placed
on top of multi-scale discriminators.

For each sample Ii , by respectively comparing its rank with
{l1, . . . , lM−1}, we can get a binary ranking vector r i ∈ R

M−1.
The m-th dimension of r i denotes whether Ii ’s rank is larger
than lm . Thus, r i takes the form as:

r(m)
i =

{
1, yi > lm

0, yi ≤ lm
, (2)
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Fig. 1. Framework of ranking GAN. We use ht ∈ R
M to denote the target one-hot label, where M is the number of age groups/expression intensities. ds/2

and ds/4 represent operations of downsampling with a factor of 2 and 4, resp. We use p1, p2 and p3 ∈ R
M−1 to denote ranking vectors predicted by the

3 discriminators. Io and It are the input and generated faces with size H × W × 3. We broadcast the target condition ht to a H × W × M tensor and then
concatenate it with Io to form the input of G with size H × W × (3 + M). Since ht is a one-hot label, in the M conditional maps H × W × M, only one
map is filled with ones while the rest are all filled with zeros.

where m = 1, . . . , M − 1. Similarly to one-hot label hi , r i

encodes also Ii ’s age/intensity information.
As stated in Section II-C, age/intensity estimation is inher-

ently a cost-sensitive problem. We should take cost sensitivity
into consideration when designing our ordinal rankers. There-
fore, we further associate Ii with a cost vector ci ∈ R

M−1.
The m-th dimension of ci denotes the cost of misclassifying
Ii with the m-th ordinal ranker. We define ci as follows:

c(m)
i =

{
yi − lm , yi > lm

lm − yi + 1, yi ≤ lm
, (3)

where m = 1, . . . , M − 1.

B. Ranking GAN Training

Now, for each sample, we have a corresponding one-hot
label h, a ranking vector r and a cost vector c. Similarly, each
age range/expression intensity has its own h, r and c. Samples
belong to the same age range/expression intensity own the
same h, r and c. Hence, one-hot labels, ranking vectors and
cost vectors are in a one-to-one correspondence. In our work,
one-hot labels are only used to tell which age range/expression
intensity we want to synthesize, i.e., the target condition.
Ranking and cost vectors instead are adopted to compute
the age/intensity estimation loss, since they can capture the
ordering characteristic of ages/expression intensities.

Given an input image Io with its one-hot label ho, the goal
is to synthesize a face image It with the same identity but from
a different age group/expression intensity specified by ht . For
Io and It , we use ro and r t to denote their corresponding
ranking vectors and use co and ct to represent their cost
vectors. During face generation, we randomly generate ht as
the condition of G so that it can flexibly synthesize new faces
corresponding to different age groups/expression intensities.
Since our discriminators are trained to not only distinguish
between real and generated samples but also estimate their
age/intensity ranks, we adopt a rank estimation loss in addition
to the adversarial loss. In order to preserve the content of
the input, we further employ a reconstruction loss. Finally,
we perform a total variation regularization on synthesized
faces with the aim of reducing unfavorable artifacts [50].

TABLE I

NETWORK ARCHITECTURE OF THE GENERATOR (“I”, “D”, “R”, “U”,
AND “O” RESPECTIVELY DENOTE “INPUT”, “DOWNSAMPLING”,

“RESIDUAL BLOCK”, “UPSAMPLING”, AND “OUTPUT”)

1) Adversarial Loss: Ranking GAN is conditioned on the
input image and a target one-hot label, adversarial losses for
the generator and discriminators are thus defined as

L D
adv = 1

3

3∑
k=1

{
− EIo

[
logDk(Io)

]

−EIo,ht

[
log

(
1 − Dk

(
G(Io, ht )

))]}
, (4)

LG
adv = 1

3

3∑
k=1

EIo,ht

[
log

(
1 − Dk

(
G(Io, ht )

))]
. (5)

2) Rank Estimation Loss: Apart from the adversarial loss,
our discriminators attempt to minimize the estimation loss
of age/intensity ranks to ensure both Io and It are correctly
classified into their corresponding age groups/expression inten-
sities. To achieve this, we add a sequence of cost-sensitive
ordinal rankers on top of multi-scale discriminators. This loss
is adopted when optimizing both the generator and discrim-
inators. The loss for optimizing discriminators is applied to
input images and formulated as

L D
rank = 1

3

3∑
k=1

{
EIo,ro

[
−

M−1∑
m=1

c(m)
o

(
r(m)

o logσ( p(m)
k )

+(1 − r(m)
o )log

(
1 − σ( p(m)

k )
))]}

, (6)

where pk(k = 1, 2, 3) are predicted ranking vectors of Io

and σ(x) is the sigmoid function, i.e., σ(x) = 1/(1 + e−x).

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on April 07,2020 at 13:03:53 UTC from IEEE Xplore.  Restrictions apply. 



2964 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE II

NETWORK ARCHITECTURE OF MULTI-SCALE DISCRIMINATORS (“M” IS THE NUMBER OF AGE GROUPS/EXPRESSION INTENSITIES.
“I”, “H”, AND “O” RESPECTIVELY DENOTE “INPUT”, “HIDDEN”, AND “OUTPUT”)

Note that pk(k = 1, 2, 3) are estimated by the M − 1
ordinal rankers which are trained using the two subsets of
Eq 1. By minimizing this loss, our discriminators can learn
to estimate Io’s age/intensity rank as ro. On the other hand,
the loss used to optimize G is applied to synthesized images
and defined as

LG
rank = 1

3

3∑
k=1

{
EIt ,r t

[
−

M−1∑
m=1

c(m)
t

(
r(m)

t logσ( p(m)
k )

+(1 − r(m)
t )log

(
1 − σ( p(m)

k )
))]}

, (7)

where pk(k = 1, 2, 3) are estimated age/intensity ranks of It .
They are predicted by the M − 1 ordinal rankers which are
trained using the two subsets of Eq 1. As a result, our generator
can learn to generate samples that have rank r t . With this loss,
we can guarantee the aging/expression effect generation.

3) Reconstruction Loss: To ensure the synthesized image
preserves the content of its input, we apply a reconstruction
loss to G. It takes the form as

Lrec = EIo,ht ,ho

[∥∥∥Io − G
(
G(Io, ht ), ho

)∥∥∥
1

]
, (8)

where G takes in G(Io, ht ) and the original label ho as inputs
and attempts to reconstruct the original image Io. We use L1
norm to encourage less blurring output.

4) Overall Objective: Finally, our objective functions to
optimize the generator and discriminators are weighted sums
of all the above defined losses. They are written, respectively,
as

L D = L D
adv + λrank L D

rank, (9)

LG = LG
adv + λrank LG

rank + λrec Lrec + λtv Ltv , (10)

where λrank , λrec and λtv are trade-off parameters. We use
Ltv to denote the total variation regularization imposed on
synthesized samples.

C. Network Architecture

For the generator, we draw lessons from CycleGAN [51]
and StarGAN [52]. The idea of using multi-scale discrimina-
tors comes from pix2pixHD [53]. Our network receives input
images with size 128 × 128 × 3. In Tables I and II, we give
detailed architectures of G and D, where “K”, “S”, and “P”
denote the kernel size, stride size, and padding size, resp.

Following [12], [17] and [52], we broadcast the target condi-
tion to a 128×128×M tensor and then concatenate it with the

input image to form a tensor with size 128×128×(3+M). The
tensor is then sent to G. Since we adopt one-hot labels as the
target condition, in the M conditional maps, only one map is
filled with ones while the rest are all filled with zeros. We can
also follow CAAE [10] and ExprGAN [14] which first encode
the input image into a vector and then concatenate it with the
one-hot label. However, as will be shown in Section V, both
CAAE and ExprGAN perform poorly on our tasks. We thus
choose broadcasting the target condition. Our generator con-
tains two stride-2 convolution layers for downsampling, six
residual blocks, and two stride-2 transposed convolution layers
for upsampling. Instance normalization followed by ReLU
activation is adopted in all layers except the last output layer,
which employs Tanh.

The 3 discriminators respectively receive inputs with size
128 × 128 × 3, 64 × 64 × 3 and 32 × 32 × 3. They share
the same network architecture and employ PatchGANs. For
each discriminator, we add two output layers ConvO1 and
ConvO2 on top of them. ConvO1 differentiates real images
from fake ones and outputs the probability of local patches
to be real. ConvO2 instead implements rank estimation and
outputs estimated age/intensity ranks. Note that no feature
normalization but Leaky ReLU with a negative slope of 0.01 is
applied to all layers of each discriminator.

IV. EXPERIMENTAL SETTINGS

A. Implementation Details

We choose to use Wasserstein GAN for stabilized training
[47]. L D

adv is therefore modified as

L D
adv = 1

3

3∑
k=1

{
− EIo

[
Dk(Io)

]
+ EIo,ht

[
Dk

(
G(Io, ht )

)]

+λgpE Î

[(∥∥∇ Î Dk( Î )
∥∥

2 − 1
)2]}

, (11)

where Î is sampled uniformly along a straight line between
a real sample and its generated one. λgp is the coefficient
of gradient penalty. We set it to be 10 in all our experi-
ments. Coefficients of reconstruction loss and total variation
regularization in Eq.10 are respectively set as λrec = 10 and
λtv = 0.0001. We use Adam with a learning rate of 0.0001,
β1 = 0.5, and β2 = 0.999 to train our network.

For face aging, we run a single optimization step for
G every five optimization steps of discriminators and set
λrank = 4. Using a batch size of 16, the training takes
less than 14 hours using a single NVIDIA TITAN Xp GPU.
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TABLE III

NUMBER OF TRAINING AND TEST IMAGES ON MORPH

For expression synthesis, we optimize G every time we
optimize discriminators. And λrank is set to 20. With a batch
size of 8, the training takes about 15 hours using the same
GPU. Note that these parameters are determined empirically.

B. Experimental Data

Since our proposed approach considers the ordering prop-
erty of human ages, using inaccurately labeled data will
interfere with the model training. To well evaluate the per-
formance of ranking GAN on face aging, we thus perform
experiments on the MORPH database [54] where all face
images are labeled with accurate ages. For expression syn-
thesis, we choose MUG [55], Oulu-CASIA [56] and CK+
[57] databases. For all face images, we first detect 68 facial
landmarks and then use 3 of them (i.e., left eye center, right
eye center, and mouth center) to perform alignment [58]. The
final images are of size 128 × 128 × 3. Although using a
larger image size can get better results, it will lead to a
very expensive training. For expression synthesis, we take
synthesis of happiness and surprise as our case study. Thus,
given a neutral face, we aim to synthesize a happiness/surprise
sequence with intensity from zero to high.

1) MORPH: The MORPH database is a popular benchmark
for facial age estimation. The dataset we choose consists
of 52,099 color images. Subject ages range from 16 to 77 years
old. Since there are very few people who are elder than 50,
we do not consider all the ages. With an age span of 5,
we define 7 age ranges/groups containing 48,868 images,
i.e., 16 ∼ 20, 21 ∼ 25, 26 ∼ 30, 31 ∼ 35, 36 ∼ 40,
41 ∼ 45 and 46 ∼ 50. We randomly select around 1/5 for test
and use the remaining for training. Note that test subjects are
disjoint from training subjects. We list the data configuration
in Table III.

2) MUG: The MUG database consists of image sequences
of happiness, sadness, surprise, anger, fear and disgust from
86 subjects, of which only 52 subjects are made publicly
available. Each sequence contains 50 to 160 images showing
a certain expression from neutral to apex then back to neutral.
We randomly choose 47 subjects for training and use the rest
for test. Since we consider only synthesis of happiness and
surprise, we manually split each happiness/surprise sequence
into 4 intensities: zero, low, medium and high.

3) Oulu-CASIA: The Oulu-CASIA database includes videos
of 80 subjects with 6 expressions, i.e., happiness, sadness,
surprise, anger, fear and disgust. Videos are captured under
3 different illumination conditions using both NIR and VIS
imaging systems. We choose VIS images captured under
strong illumination for our experiments. We randomly select
1/10 for test and use the remaining for training. Each happi-
ness/surprise video is then manually split into 4 intensities.

4) CK+: The CK+ database contains 593 sequences from
123 subjects with 7 universal expressions. Each sequence

TABLE IV

NUMBER OF TRAINING AND TEST IMAGES ON MUG, OULU-CASIA
AND CK+ (“H” AND “S” RESPECTIVELY DENOTE “HAPPINESS”

AND “SURPRISE”)

Fig. 2. Training examples of different intensities. Left and right parts
respectively show happiness and surprise data.

starts with a neutral emotion and ends with the peak of a
certain expression. Note that there are some subjects without
happiness/surprise sequence. For happiness, we have a total
of 87 subjects. And the number of subjects with surprise is
82. To fully utilize the limited data, we use all these subjects
for training, and use their corresponding remaining for test
(i.e., 36 and 41 subjects for happiness and surprise, resp).
Similarly, we manually split each sequence into 4 intensities.

In Table IV, we list the number of training and test images
for each expression database. Note that we test only neutral
faces in this study, i.e., images with zero intensity. For
determining samples’ intensities when preparing training data,
we classify samples as “Low” if they show slight expressions,
group them into “Medium” if they present obvious expres-
sions and classify them as “High” if they have maximum
expressions. In Figure 2, we give several examples of different
intensities.

V. SYNTHESIS RESULTS

We first report synthesis results obtained by using ranking
GAN on the 4 databases. Then we compare our approach with
prior work to show its superiority. In order to completely eval-
uate ranking GAN, we further present several ablation studies.
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TABLE V

OBJECTIVE AGE ESTIMATION RESULTS (IN YEARS) OBTAINED BY FACE++ ON MORPH WITH A SPAN OF 5 YEARS

TABLE VI

OBJECTIVE FACE VERIFICATION RESULTS OBTAINED BY FACE++ ON MORPH WITH A SPAN OF 5 YEARS

Fig. 3. Qualitative results obtained by using ranking GAN on MORPH.
Input faces together with actual ages are shown in the leftmost column. For
each row, synthesized faces in groups elder than the input age are progression
results, while those in younger groups belong to regression results.

Finally, we examine the generalization capability of ranking
GAN in synthesizing other basic expressions.

A. Age Synthesis

We show in Figure 3 some synthesis results on MORPH.
As observed, using ranking GAN achieves smooth aging
sequences and generates visually plausible results. For age
progression, wrinkles appears gradually. Hair gets gray slowly.
For some males, beard gets gray also in aged faces. For
regression, wrinkles, mustache and beard get reduced or even
removed. To well examine ranking GAN’s ability in both
capturing aging patterns and keeping identity cue, we further
perform a quantitative analysis. For evaluating aging effect,
we employ the online face analysis tool of Face++ [59]
to estimate ages of both input faces (i.e., real faces) and
their synthesized ones obtained by ranking GAN. For each
age group, we report the mean and standard deviation of
estimated ages. The results are shown in Table V. Although
there exists deviation in Face++’s estimated ages from actual
ages (e.g., 24.21±4.68 vs 16 ∼ 20), the overall aging trend is
relatively smooth. Note that, here, directly comparing ages of

TABLE VII

OBJECTIVE AGE ESTIMATION AND FACE VERIFICATION RESULTS

OBTAINED BY FACE++ ON MORPH WITH A SPAN OF 10 YEARS

generated face with actual ages of real faces is not reasonable.
Since ages of generated faces are estimated by Face++, for
a fair comparison, real faces should be also estimated by
Face++. This is reported in the “Real Face” row of Table V.
By comparing estimated ages of generated faces with those of
real faces, we can see that ranking GAN successfully captures
face aging patterns. In all age groups, faces synthesized by
ranking GAN have very close ages to real faces.

Objective face verification is also conducted using Face++
in order to check whether identity is well preserved during face
aging. We compare each test face with its corresponding syn-
thesized ones. For each comparison, we can get a confidence
value indicating the similarity of two faces. The confidence lies
within [0,100]. Higher confidence indicates higher possibility
that two faces belong to the same person. Finally, for each
age group, we calculate the mean and standard deviation
of confidence over all test faces. The results are reported
in Table VI. As can be seen, we obtain very high confidence
for all age groups. We can therefore conclude ranking GAN
performs well in preserving identity during face aging.

To show the advantage of using a shorter time span, we fur-
ther apply our method to face aging with a span of 10 years.
We define 4 age groups on MORPH including 16 ∼ 25,
26 ∼ 35, 36 ∼ 45 and 46 ∼ 55. In Table VII, we report mean
values of the results of age estimation and face verification.
As observed, using ranking GAN achieves also promising
results when the span of 10 is adopted. Now let us return
to the question raised in Section I. If we want to know what
a teenager will look like when he becomes 30, which of the
4 models should we use? Note that both mean ages of Model
26 ∼ 35 (34.66) and Model 16 ∼ 25 (25.86) deviate from
30 by more than 4 years. Therefore, neither of them can
give a convincing result. When adopting a shorter time span,
however, we can get more fine-grained models. For example,
7 models can be obtained when a span of 5 is used. From
Table V, we can see Model 26 ∼ 30 can be adopted, since its
mean age (31.03) are very close to 30.
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Fig. 4. Qualitative expression synthesis results obtained by using ranking GAN. Top and bottom parts respectively show happiness and surprise synthesis.

TABLE VIII

OBJECTIVE FACE VERIFICATION RESULTS OBTAINED BY FACE++ ON MUG, OULU-CASIA AND CK+. FACES ARE SYNTHESIZED BY RANKING GAN

B. Expression Synthesis

We show expression synthesis results in Figure 4.
As observed, for both happiness and surprise synthesis, rank-
ing GAN achieves promising results. From zero to peak,
the intensity gets higher and higher. Identity is also well
preserved during expression process. Note that although train-
ing data in Oulu-CASIA and CK+ is very limited (as listed
in Table IV), we obtain visually plausible results. For quan-
titative evaluation, we check only whether identity is well
preserved. Similarly, we perform verification using Face++.
The confidence values are reported in Table VIII. As observed,
we achieve high confidence in most cases. Only when syn-
thesizing surprise faces with high intensity on Oulu-CASIA
and CK+, the identity is not well preserved. The main reason
might be the large variation in facial geometry caused by big
surprise. The very limited data might also contribute to this.

C. Comparison With Prior Work

As for the control methods, we use CAAE [10] and
IPCGANs [12] for face aging and ExprGAN [14] for expres-
sion synthesis. We choose these methods because their codes
are made publicly available on Github. We thus can easily
implement them for our own tasks. For CAAE and IPCGANs,

we use the same training and test data as ranking GAN’s.
For ExprGAN, following the original work, we consider
5 intensities and use images with the highest intensity from
6 expressions. Since many subjects in CK+ have less than
6 expressions, we implement ExprGAN only on MUG and
Oulu-CASIA. On Oulu-CASIA, we use the last 3 frames of
each video. And on MUG, we select around 10 frames with
the highest intensity for each video.

Qualitative results are shown in Figures 5 and 6. From
Figure 5, we can see that CAAE performs poorly in both
identity preservation and aging effect generation. Moreover,
its synthesized faces lack fine details. IPCGANs, by contrast,
show superiority in keeping identity cue and generating fine
details. However, for age progression of young faces, they
achieve low quality faces for the several eldest groups. For
example, the eye region is synthesized poorly. For expression
synthesis, we observe that ExprGAN suffers from over-fitting
severely. It performs poorly in keeping identity cue and
modifies even input’s gender. Moreover, when synthesizing
faces with low intensity, ExprGAN generates very low quality
images.

We further quantitatively compare our approach with the
control methods. The results of CAAE and IPCGANs are
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Fig. 5. Comparison with prior work: CAAE [10] and IPCGANs [12]. In the leftmost column we give input faces and their actual ages.

reported in Tables V and VI, while results of ExprGAN are
shown in Table IX. As observed, for facial age synthesis,
we achieve the best results in both learning aging patterns
and keeping identity cue. By comparing Table IX with VIII,
we can see ranking GAN performs much better in identity
preservation than ExprGAN.

It should be noted that the training process of IPCGANs
suffers from model collapse. The results reported here

are thus obtained before model collapse. For expres-
sion synthesis, in order to generate different expressions
(e.g., happiness, sadness, surprise, anger, fear and disgust),
our approach needs to train different models. However, once
we finish the model training, expression synthesis will be
a very efficient process. On a single NVIDIA GTX1080Ti
GPU, generating one expression sequence only costs
about 12ms.
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Fig. 6. Comparison with prior work: ExprGAN [14]. The first half rows show results of MUG, while the remaining are results of Oulu-CASIA.

TABLE IX

OBJECTIVE FACE VERIFICATION RESULTS OBTAINED BY FACE++ ON MUG AND OULU-CASIA. FACES ARE SYNTHESIZED BY EXPRGAN [14]

TABLE X

ABLATION STUDY RESULTS WITH OBJECTIVE AGES ESTIMATED BY FACE++ ON MORPH

TABLE XI

ABLATION STUDY RESULTS WITH VERIFICATION CONFIDENCE CALCULATED BY FACE++ ON MORPH

D. Ablation Study
In order to validate the contribution of different modules,

next we conduct several ablation studies. The first study is used
to examine the contribution of ordinal ranking, which is per-
formed by replacing ordinal ranking with softmax loss-based
age group classification. The second study is performed by
using a single-scale discriminator in order to check the
contribution of multi-scale discriminators. Finally, we check
the contribution of the reconstruction loss. We perform age
synthesis on MORPH for these ablation studies. Qualitative
results are given in Figure 7. As observed, without ordinal
ranking, generated faces present artifacts. Without multi-scale
discriminators, synthesized faces look blurred. If removing

the reconstruction loss, generated faces show inconsistent
color. We further quantitatively check the contribution of
the 3 modules. Quantitative measures include objective ages,
verification confidence and SSIM [60]. We report these results
in Tables X, XI and XII. From Table X, we can see that
removing any of the 3 modules leads to poorer aging effect.
For example, for Group 46 ∼ 50, ages of synthesized faces
differ by even 6 years from real ages. For identity preservation
and SSIM, as observed from Tables XI and XII, we achieve
the best result.

To demonstrate the effectiveness of the 3 multi-scale
discriminators, we further investigate different numbers of
discriminators and downsample rates. Specifically, we consider
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Fig. 7. Ablation study results on MORPH. Input faces and their actual ages are put in the leftmost column.

Fig. 8. Sadness, disgust, fear and anger synthesis obtained by using ranking GAN on Oulu-CASIA.
TABLE XII

ABLATION STUDY RESULTS WITH SSIM ON MORPH

the use of 1, 2 and 3 discriminators. For downsample rates,
we consider 2 and 4. Therefore, we can get a total of

4 schemes. They are respectively D1, D1 + D2, D1 + D3 and
D1 + D2 + D3. We perform happiness synthesis on CK+ for
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Fig. 9. Ablation study results on CK+. Input faces are put in the leftmost
column.

this study. The results are given in Figure 9. Note that we
report only qualitative results, since it is easy to observe from
these results the superiority of our scheme (D1 + D2 + D3).
For example, when adopting the other 3 schemes, faces with
low and medium intensities look very similar to each other.
Faces with medium intensities do not even open the mouth
and show teeth.

E. Generalization Capability Study

Finally, we examine the generalization capability of ranking
GAN in synthesizing other basic expressions including sad-
ness, disgust, fear and anger. We conduct the experiments
on Oulu-CASIA. In Figure 8, we give several examples.
As observed, for all the 4 expressions , we obtain promising
results. Identity is well preserved during expression process.
The intensity also increases gradually from zero to peak.

VI. CONCLUSION AND FUTURE WORK

In this paper, to fully utilize the well-ordering property
of human ages and expression intensities, we developed an
ordinal ranking adversarial network for face aging and expres-
sion synthesis with varying intensities. This ranking scheme
can take full advantage of limited training data. Moreover,
learning-to-rank together with cost sensitivity enables our
approach to well catch the correlation among different age
ranges/expression intensities. The use of multi-scale discrimi-
nators further makes our ordinal rankers more robust, so that
aging patterns/expression variation can be successfully cap-
tured. We conducted extensive experiments to evaluate the

performance of ranking GAN. Promising results demonstrated
the effectiveness of our approach on synthesizing face aging
sequences and faces with varying expression intensities.

Similar to human ages and expression intensities, facial
poses are inherently ordinal and form a well-ordered set.
As a future work, we would investigate ordinal ranking and
deep generative models for face rotation. In addition, with
craniofacial growth, facial growth shows large differences
from birth to adulthood. It thus will be more significant to
study face aging with a shorter time span for this early stage.
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