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Abstract— The existing research work on facial age synthesis
has been mostly focused on long-term aging (e.g., over an age
span of 10 years or more). In this paper, we employ generative
adversarial networks (GANs) as a tool to investigate age synthesis
over different age spans. Compared with long-term aging, short-
term age synthesis suffers from the reduced amount of available
training data, which can severely hinder the model training.
We conduct a series of experiments to validate this. To facilitate
short-term age synthesis, we further propose label distribution-
guided generative adversarial network (ldGAN), where each sam-
ple is associated with an age label distribution (ALD) rather than
a single age group. Accordingly, each sample can contribute not
only to the learning of its own age group but also to neighbouring
groups’ learning. This is useful when addressing short-term aging
to cope with the reduced amount of training data. In addition,
unlike one-hot encoding which treats age groups as independent
from one another, ldGAN can well capture the correlation among
different age groups, so that smooth aging sequences can be
achieved. The ALD model is integrated into GAN with a two-
step process. Firstly, instead of the traditional one-hot encoding,
ALD is applied as the condition of the generator. Secondly,
we add a sequence of label distribution learners on top of several
multi-scale discriminators, with the aim of minimizing the label
distribution learning loss when optimizing both the generator and
discriminators. Both qualitative and quantitative evaluations are
conducted to assess ldGAN’s ability in dealing with two core
issues of face aging, i.e., aging effect generation and identity
preservation. The obtained experimental results demonstrate the
effectiveness of ldGAN in both learning short-term aging patterns
and coping with the lack of training data.
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I. INTRODUCTION

WHAT will Mary look like after 20 years or what did
she look like 20 years ago? Age synthesis, which

allows to predict the future facial appearance (i.e., age pro-
gression) or to reconstruct the past facial appearance (i.e., age
regression) of an individual, is one of the most intriguing
topics in computer vision, biometrics and computer graph-
ics. It has shown potential in diverse applications including
finding lost/wanted persons, face recognition robust to aging
variations, entertainment and cosmetic studies to cope with
aging. The process of physiological aging causes significant
changes in both the shape and texture of human faces, thus
making the modelling of face aging a very challenging task.
Aesthetically synthesizing faces of a subject at different ages
thus becomes an extremely difficult task. Even though every
human is subject to aging, the associated change in the facial
appearance differs for each individual. The aging process
occurs slowly. It greatly depends on several intrinsic factors,
such as genetics, gender, and ethnicity, and extrinsic factors,
such as the lifestyle and the working conditions. The paucity
of available labeled data further increases the difficulty of
designing an age synthesis model which is able to consistently
generalize the aging process for different subjects. Existing
databases either include very few time distant face images
for each individual (shallow) or the available data comes
from very few subjects (narrow). Collecting a deep and broad
database is crucial but very hard to accomplish in practice.

Nevertheless, automatic facial age synthesis has received
tremendous attention, with several efforts devoted to modeling
the longitudinal aging process [1], [2]. Early attempts gener-
ally investigated the biological structure and aging process of
facial features such as the muscles, skin and cranium [3]–[10].
These approaches, however, suffer from the complexity of
the model and are computationally expensive. They usually
require long sequences of personal face images to cover a long
time span. In contrast, prototype approaches do not require
long face sequences of the same individual [11]–[15]. These
approaches first divide all available faces into several age
groups, then compute a prototype for each group. A test face
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Fig. 1. Visually perceivable changes in facial appearance of six individuals. (Top) Face images captured at different ages of 2 subjects from FG-NET [27].
(Bottom) Face images captured at different ages of 4 subjects from MORPH [28]. The number on the bottom of each face image represents the age of the
subject at which the image was captured.

can be transformed into an age-progressed one by adding
the difference between prototypes of two age groups. Even
though achieving promising results, prototype methods fail
to keep personalized aging patterns [16]. Despite of the
success of deep learning in different areas, only recently
researchers have turned their attention to synthesizing faces
by using deep neural networks (DNN) [17]–[19]. For example,
in [17] a recurrent neural network was exploited to model the
aging pattern between neighbouring age groups. Duong et al.
instead investigated temporal restricted boltzmann machines
for learning aging transformations [18]. Among various deep
models, generative adversarial networks (GANs) have in par-
ticular attracted considerable interest and produced impressive
results [20]–[26].

It should be noted that the past research efforts were mostly
devoted to long-term facial age synthesis. For example, all
recent approaches proposed for adult face aging consider time
spans of 10 years [17]–[26] and the corresponding time span
for young face aging is 5 years [17], [19], [22]. On the other
hand, the analysis of short-term face aging (e.g., over a time
frame of less than 5 years) has been relatively understudied.
Assuming to adopt a time span of 10 years, which age group
model, between 20 ∼ 30 and 30 ∼ 40, should be applied to
forecast the facial appearance of a teenager at the age of 30?
It is worth noting that both models use data with age differing
by even 10 years from 30 for training. In Figure 1, an example
of facial age progression of 6 subjects is shown. As depicted
in the figure, the pictures of all subjects have been taken in
a maximum time frame of 9 years. By adopting a long-term
aging model with a span of 10 years, all pictures of the same
subject would be classified within the same age group. In this
way all shape or texture changes, which are clearly visible in
the pictures, would be neglected. On the contrary, by adopting
a short-term aging model, pictures of the same subjects
would be classified within different age groups, thus allowing
to appreciate the characteristic changes of visual features.
In general, a short-term aging model allows to capture and

better understand even subtle changes in the facial appearance.
However, reducing the age span also involves a reduction of
the available training data for each age range/group. This side
effect should be taken into account when designing short-term
aging models.

In this study, we investigate both long-term and short-
term facial age synthesis. Specifically, we exploit state-of-
the-art conditional generative adversarial networks (cGANs)
to generate face aging sequences over different age spans.
Experimental results show that GAN can achieve smooth
aging sequences and generate high-quality images, when a
large age span is used. However, it fails to produce sat-
isfactory results when a small span is used, with many
synthesized faces presenting low quality, blurry regions and
artifacts.

To facilitate short-term age synthesis, we further propose
a novel GAN-based approach, i.e., label distribution-guided
generative adversarial network (ldGAN). In ldGAN, each
sample is associated with an age label distribution (ALD)
rather than a single age group. The label distribution covers
different age groups. For each sample, values in its ALD
represent the degree that the sample belongs to each age
group. Consequently, each sample can contribute not only to
the learning of its own age group but also to neighbouring
groups’ learning. This allows ldGAN to cope with the paucity
of training data in short-term age synthesis. Moreover, unlike
one-hot encoding which treats age groups as independent from
one another, ALD can well capture the correlation among
different age groups, so that aging patterns can be well
learned. The age label distribution is integrated into the GAN
network in two steps. Firstly, ALD is exploited to condition
the generator. Secondly, a sequence of label distribution learn-
ers are added on top of several multi-scale discriminators.
The presented experimental results well demonstrate the
effectiveness of ldGAN in both capturing short-term
aging patterns and coping with the paucity of training
data.
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The main contributions of this paper are:
1) We exploit state-of-the-art conditional generative adver-

sarial networks to generate face aging sequences over different
age spans.

2) We propose label distribution-guided generative adversar-
ial networks for short-term aging, attempting to fully utilize the
limited training data and well capture the correlation among
different age ranges.

3) We conduct both qualitative and quantitative experiments
to examine ldGAN’s ability in both learning aging patterns and
keeping identity cues.

The rest of the paper is organized as follows: Section II
provides an overview of the related research work. We inves-
tigate face aging with different age spans in Section III.
Our proposed ldGAN is detailed in Section IV. Section V is
devoted to experimental evaluation. Finally, we conclude the
whole work and further give some interesting future work in
Section VI.

II. RELATED WORK

In this section, a short literature review on generative
adversarial networks, facial age synthesis and label distribution
learning is provided.

A. Generative Adversarial Networks

Generative adversarial networks were relatively recently
proposed to learn a generative model through an adversarial
process [29]. A classical GAN consists of a generator G
and a discriminator D. The generator learns to capture the
data distribution and generate fake samples that are indis-
tinguishable from real samples. The discriminator instead
tries to distinguish real samples from fake ones generated
by G. Following this seminal work, various variants have
been proposed [30]–[35]. The conditional generative adver-
sarial networks have particularly been actively studied [30],
where the generator and discriminator are conditioned on
some extra information. For example, Tran et al. adopted a
pose label as a condition for generating face images with
target poses [36]. In order to generate face images with target
expression, Song et al. proposed to use facial geometry as the
condition of the generator [37]. In StarGAN [38], a target
domain label was used as the condition for multi-domain
image-to-image translation. In [39], for synthesizing faces with
a wide range of expressions, Pumarola et al. introduced a novel
GAN conditioning scheme based on Action Units annotations.
Similarly, our approach is a conditional GAN, where age label
distribution is employed as the condition.

B. Facial Age Synthesis With cGANs

Apart from facial pose synthesis, expression synthesis and
attribute manipulation, cGANs have been successfully used
in facial age synthesis. In [20], Antipov et al. introduced
cGANs to automatic face aging, where a one-hot age group
label was used as a condition to guide the synthesis. They
achieved promising results for long-term face aging. In [22],
a conditional adversarial autoencoder (CAAE) was proposed,
where the input face is first encoded to a latent vector. After

that the latent vector together with a target one-hot age group
label were sent to the generator for age progression/regression.
To ensure that the generated faces present desired aging effect,
Yang et al. developed an age-related GAN loss for age trans-
formation [23]. They further adopted an identity preservation
loss to well keep identity cues during age transformation.
Impressive results were obtained for both age progression
and rejuvenation. Instead of using an age-related GAN loss,
Wang et al. pre-trained an age classifier and used it to
determine which age group the face comes from [24]. With this
age classification module, the proposed identity-preserved con-
ditional generative adversarial networks (IPCGANs) achieve
impressive aging effect. Given that people from different
demographic groups have different aging processes, Liu et al.
designed an attribute-aware face aging model [26]. Specifi-
cally, gender and race attributes were considered. Although
achieving impressive results, these approaches focus only on
long-term face aging. In this work, we investigate cGANs to
generate both long-term and short-term aging sequences.

C. Label Distribution Learning
Label distribution learning (LDL) has been successfully

used in several applications including facial age estimation
and head pose estimation [40]–[42]. This learning model was
demonstrated to be more effective with a reduced number
of unbalanced training examples. For example, for facial
age estimation, each face image is associated with an age
label distribution rather than a single age value. Each label
distribution covers several age labels, representing the degree
to which each label describes the face. Consequently, each
sample can contribute not only to the learning of its own age
but also to the learning of its neighbouring ages. In addition,
unlike one-hot encoding which treats ages as independent
from one another, label distribution can successfully capture
the correlation among different ages so that samples with
neighbouring ages share more than those further away.

III. LONG-TERM AND SHORT-TERM AGE SYNTHESIS

In this section, we investigate facial age synthesis with dif-
ferent age spans by using a state-of-the-art GAN architecture.

A. Methodology

Suppose we have a total of N age ranges/groups with an
age span of s. We choose s = 10, 5, 3 in this study to
cover both long-term and short-term face aging. Following
existing GAN-based face aging approaches [20]–[22], [24],
[25], we adopt one-hot label as age encoding. Given a face
image Io, GAN employs Io as well as a target one-hot
label as the condition to generate another image It with the
same identity but from a different group. Following [24],
[25], we train GAN to not only distinguish between real
and generated samples but also determine their age groups.
That is, in addition to the adversarial loss, we adopt an
age group classification loss for optimizing both G and D.
In order to preserve the content of the input, we further
adopt a reconstruction loss (i.e., cycle-consistency loss [44]).
Finally, in order to reduce unfavorable artifacts, we apply total
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TABLE I

NUMBER OF TRAINING AND TEST IMAGES ON MORPH WITH s = 10 AND s = 5

TABLE II

NUMBER OF TRAINING AND TEST IMAGES ON MORPH WITH s = 3

variation regularization to synthesized faces [43]. Note that
both [23] and [24] employ perceptual loss, however, we do not
observe significant improvements. We thus do not use identity
preserving loss here. For the network architecture, we borrow
from state-of-the-art GAN architectures like IPCGANs [24],
StarGAN [38] and CycleGAN [44]. The generator contains
two stride-2 convolution layers for downsampling, six residual
blocks, and two stride-2 transposed convolution layers for
upsampling. We use instance normalization followed by ReLU
activation in all layers except the last output layer, which uses
Tanh. For the discriminator, we adopt PatchGANs and add
two output layers on top of it. One is used to differentiate
real images from fake ones. The other is used to perform age
group classification. We use Leaky ReLU with a negative slope
of 0.01 for all six convolution layers of the discriminator, but
apply no feature normalization. We apply this GAN framework
to facial age synthesis and name it 1hotGAN.

B. Experimental Data
Compared with prior work which investigates only long-

term aging, in this work, we study also short-term facial age
synthesis. Note that for short-term aging, using inaccurately
labeled data will severely interfere with the model training.
Suppose we have a training sample with labeled age differing
by 8 years from its actual age. If we use s = 10, it may
be still placed into the true age group. However, if s = 3
is adopted, this sample will be placed into a wrong age
range differing by even 3 ranges from its true age range.
Therefore, a database with accurately labeled data should be
used in order to well study short-term aging. Popular facial age
databases include MORPH [28], CACD [46], UTKFace [22],
FG-NET [27] and Adience [47] databases. Note that ages of
CACD are estimated by simply subtracting the birth year from
the year of which the photo was taken, thus not accurate
enough. Ages of UTKFace instead are estimated through an
automatic age estimation algorithm and double checked by a
human annotator. They are thus not accurate enough, either.
Although face photos in FG-NET are labeled with accurate
ages, there include only 1,002 photos. For Adience, face
images are grouped into 8 age groups and only group labels
are given. The MORPH database is a widely used benchmark
for age-related applications, containing a large number of face
photos labeled with true ages. We thus perform experiments

on MORPH throughout this work. It should be noted that
MORPH includes only faces of individuals with ages from
16 to 77 years old. Childhood aging thus cannot be studied
with this database, where large transitions occur in face size
and structure.

The MORPH database provides not only the real age
information but also subjects’ gender and ethnicity. We use
an extension of this database, which contains 52,099 color
images with near-frontal pose, neutral expression, and uniform
illumination. Subject ages range from 16 to 77 years old. Since
there are very few people who are elder than 50, we do not
consider all the ages. For s = 10, we define 4 age groups
containing 51,158 images, i.e., 16 ∼ 25, 26 ∼ 35, 36 ∼ 45
and 46 ∼ 55. And for s = 5, there are 7 groups containing
48,868 images, i.e., 16 ∼ 20, 21 ∼ 25, 26 ∼ 30, 31 ∼ 35,
36 ∼ 40, 41 ∼ 45 and 46 ∼ 50. Finally, we have 12 groups
for s = 3 containing 49,483 images, i.e., 16 ∼ 18, 19 ∼ 21,
22 ∼ 24, 25 ∼ 27, 28 ∼ 30, 31 ∼ 33, 34 ∼ 36, 37 ∼ 39,
40 ∼ 42, 43 ∼ 45, 46 ∼ 48, and 49 ∼ 51.

For each experiment of s = 10, 5, 3, we randomly select
around 80% for training and use the remaining for test. Note
that subjects in the test set are disjoint from those in the
training set. Tables I and II list the data configuration of using
different age spans. As observed, when using s = 10, each
age group has adequate training data. Along with the decrease
of s, training data of each group gets less and less. When s
reaches to 3, there is only limited training data left for each
group. This is particularly the case for Group 49 ∼ 51, with
only 1,600 training samples.

For images in MORPH, we first use the tool developed
in [48] to detect facial landmarks. Then we perform face
alignment using three landmarks, i.e., left eye center, right
eye center, and mouth center. The final images are of size
128×128×3. Although using a larger image size can get more
promising results, the model learning process will become very
expensive.

C. Synthesis Results
We show in Figure 2 several synthesis results obtained by

using 1hotGAN. As can be seen, when s = 10 is adopted,
1hotGAN achieves smooth aging sequences and generates
high-quality images. When s is decreased to 5, synthesized
sequences present a little lower quality. When s is further
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Fig. 2. Face synthesis with different age spans using 1hotGAN. In the leftmost column we give input faces together with their real ages.

decreased to 3, generated images show much lower quality.
Many synthesized faces present blurry regions and artifacts.
Some even present a changed identity. The limited training
data in each age group severely hinders the model training
process.

IV. LABEL DISTRIBUTION-GUIDED GAN
Next, we put emphasis on short-term facial age synthesis,

including both age progression and age regression. Specifi-
cally, we concentrate on synthesis over an age span of 3 years.
As shown in Table II, when s = 3 is used, there is very limited
training data for each age group. To fully utilize the limited
data, we propose to integrate label distribution learning into
common GAN architectures. The use of age label distribution
further enables our approach to well capture the correlation
among different age groups, so that smooth aging sequences
can be achieved.

The proposed ldGAN consists of a generator G and 3 multi-
scale discriminators denoted as D1, D2 and D3. We use age

label distribution as the condition to guide the generator for
synthesizing faces with target age groups. The 3 discriminators
share the same network architecture but operate at different
image scales. Specifically, we downsample the input with a
factor of 2 and 4 and create an image pyramid of 3 scales.
We then train the 3 discriminators to distinguish between real
faces and generated ones. In addition, D1, D2 and D3 under-
take the task of age label distribution learning. We achieve this
by adding a sequence of label distribution learners on top of
the 3 discriminators. Figure 3 illustrates our approach. In the
following, we give full details of ldGAN.

A. Label Distribution of Age Groups

LDL was originally proposed for scalar age value estima-
tion [40], where a label distribution covers a certain number
of ages. In order to enable ALD to cover different age groups,
we use the mean age of each age group as the representative
age. Specifically, for each group we compute a mean age and
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Fig. 3. Framework of ldGAN. We use ds/2 and ds/4 to denote downsampling operations with factors of 2 and 4. D1, D2 and D3 constitute our multi-scale
discriminators. We use p1, p2 and p3 to represent ALDs predicted by the 3 discriminators. Suppose the size of Io is H × W × 3, then the input to G has a
size of H × W × (3 + N), where N is the number of age groups.

denote it as yi , where i = 1, . . . , N . Note that N is the number
of age groups. We use i to denote the i -th group. In this study,
we adopt Gaussian label distribution for age encoding. For an
image from the i -th group, we use yi as its representative age.
The k-th dimension of its ALD is defined as

zk = 1

σ
√

2πW
e
− (yk−yi )

2

2σ2 , k = 1, . . . , N, (1)

where σ is the standard deviation of Gaussian distribution, and

W is the normalization factor which guarantees
N∑

k=1
zk = 1.

That is,

W = 1

σ
√

2π

N∑
k=1

e− (yk−yi )
2

2σ2 . (2)

For a sample from the i -th group, using such an ALD can
make sure the description degree of yi is the highest, while
degrees of other groups decrease with the increase of distance
away from yi .

In Table III, we list values of ALD for a sample from the
i -th group with different σ and s. We use “-” to denote too
tiny values. Note that we list only values of neighbouring
groups, since description degrees of further groups are too tiny.
As observed, when s = 10 is adopted, ALD gets very close to
one-hot encoding. This is especially the case for σ = 1, ALD
becomes exactly one-hot encoding. Along with the increase
of σ and decrease of s, ALD moves further and further from
one-hot encoding and neighbouring groups are given higher
and higher values. Following [40], we set σ = 2 in all our
experiments.

B. Loss

Given an image Io with ALD zo = {zo1, . . . , zoN }, ldGAN
aims to synthesize another image It with the same identity but
from a different age group specified by zt = {zt1, . . . , zt N }.
We randomly generate zt as the condition of G so that it

TABLE III

VALUES OF NEIGHBOURING GROUPS IN ALD OF A SAMPLE FROM THE
i -TH GROUP WITH DIFFERENT σ AND s

can flexibly synthesize new images corresponding to different
groups. Similarly to 1hotGAN, we use both adversarial and
reconstruction loss. However, instead of one-hot encoding
based classification loss, we adopt label distribution learning
loss when optimizing both the generator and discriminators.
Finally, a total variation regularization is applied to synthe-
sized faces with the aim of reducing artifacts.

1) Adversarial Loss: The generator and discriminators are
trained alternatively via an adversarial process. Discriminators
attempt to distinguish real images from synthesized ones. The
generator instead tries to synthesize realistic images that can
fool discriminators. ldGAN is conditioned on the input image
and a target ALD, the adversarial losses for the generator and
discriminators are thus defined as

L D
adv = 1

3

3∑
v=1

{
− EIo

[
logDv (Io)

]

−EIo,zt

[
log

(
1 − Dv

(
G(Io, zt )

))]}
, (3)

LG
adv = 1

3

3∑
v=1

EIo,zt

[
log

(
1 − Dv

(
G(Io, zt )

))]
. (4)
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2) LDL Loss: Apart from the adversarial loss, our dis-
criminators attempts to minimize LDL loss to ensure both
Io and It are correctly classified into their corresponding age
groups. To achieve this, we add a sequence of label distribution
learners on top of our multi-scale discriminators. The LDL
loss is a cross-entropy loss and is adopted when optimizing
both the generator and discriminators. The loss for optimizing
discriminators is applied to input images and formulated as

L D
ldl = 1

3

3∑
v=1

{
EIo,zo

[
−

N∑
k=1

zoklogpvk

]}
, (5)

where pv = {pv1, . . . , pv N } is the estimated label distribution
of Io. By minimizing this loss, our discriminators can learn to
classify Io into its corresponding age group specified by zo.
On the other hand, the loss used to optimize G is applied to
synthesized images and defined as

LG
ldl = 1

3

3∑
v=1

{
EIt ,zt

[
−

N∑
k=1

ztklogpvk

]}
, (6)

where pv = {pv1, . . . , pv N } is the learned ALD of It . As a
result, our generator can learn to generate samples that can be
classified into the target age group denoted by zt . With this
LDL loss, we can guarantee the aging effect generation.

3) Reconstruction Loss: To ensure the synthesized image
preserves the content of its input, we apply a reconstruction
loss to G. It takes the form as

Lrec = EIo,zt ,zo[� Io − G(G(Io, zt), zo) �1], (7)

where G takes in the synthesized image G(Io, zt ) and the
original label distribution zo as input and attempts to recon-
struct the original image Io. We use L1 norm to encourage
less blurring outputs.

4) Overall Objective: Finally, our objective functions to
optimize the generator and discriminators are weighted sums
of all the above defined losses. They are written, respec-
tively, as

L D = L D
adv + λldl L D

ldl , (8)

LG = LG
adv + λldl LG

ldl + λrec Lrec + λtv Ltv , (9)

where λldl , λrec and λtv are trade-off parameters. Ltv repre-
sents the total variation regularization imposed on synthesized
samples.

C. Network Architecture

The architecture of the generator keeps the same as 1hot-
GAN. The idea of adopting multi-scale discriminators comes
from pix2pixHD [45]. For the 3 discriminators, we adopt
PatchGANs and add two output layers on each of them. One is
used to distinguish between real images and fake ones. It thus
outputs the probability of local patches to be real. The other
instead implements LDL and outputs estimated ALD. Note
that the 3 discriminators share the same network architecture.
Similarly to 1hotGAN, we use Leaky ReLU with a negative
slope of 0.01 for all convolution layers of the 3 discriminators
but apply no feature normalization. Our input to G has the
size of 128 × 128 × (3 + N), while inputs to D1, D2 and D3
are of size 128 × 128 × 3, 64 × 64 × 3 and 32 × 32 × 3, resp.

D. Training Details

Training details keep the same as 1hotGAN. We adopt
Wasserstein GAN in order to improve training stability [34].
Our L D

adv thus takes the form as

L D
adv = 1

3

3∑
v=1

{
− EIo

[
Dv (Io)

]
+ EIo,zt

[
Dv

(
G(Io, zt )

)]

+ λgpE Î

[(∥∥∇ Î Dv ( Î )
∥∥

2 − 1
)2]}

, (10)

where Î is sampled uniformly along a straight line between Io

and It . λgp is the coefficient of gradient penalty, which is set
to be 10 in all our experiments. Trade-off parameters in Eq.8
and Eq.9 are set as λldl = 4, λrec = 10 and λtv = 0.0001.
We train ldGAN using Adam with a learning rate of 0.0001,
a batch size of 16, β1 = 0.5, and β2 = 0.999. We perform one
optimization step for G after three optimization steps of D1,
D2 and D3. Age progression and regression are implemented
by randomly generating zt as the condition of G. It takes about
16 hours to train one model with a single NVIDIA GTX1080Ti
GPU. Given a test face image, it costs about 0.04s to generate
the whole short-term aging sequence.

V. EXPERIMENTAL EVALUATION

In this section, we conduct a series of experiments to eval-
uate our proposed approach. We first show qualitative results.
Then we report objective age estimation and face verification
results in order to quantitatively check whether ldGAN per-
forms well in aging effect generation and identity preservation.
To thoroughly evaluate ldGAN, we further conduct several
ablation studies. We then make a comparison with current
state of the art in order to show the superiority of ldGAN over
existing related work. Finally, we evaluate the performance of
ldGAN in long-term aging scenario, where there is adequate
training data. Note that for all the experiments in this section,
the data configuration remains unchanged, i.e., keeping the
same as Tables I and II.

A. Qualitative Evaluation

Qualitative results are reported in Figure 4. As can been
seen, using ldGAN obtains visually plausible results. From
young to old, facial skin gets rougher gradually. Nasolabial
folds begin to appear. Beard gets gray slowly for males. For
some people, hair also gets gray in old faces. For regression,
skin gets smoother gradually. Wrinkles, mustache and beard
get reduced or even removed. Apart from the well generated
aging effect, we achieve also high-quality images. More impor-
tantly, identity is well preserved in synthesized faces.

B. Quantitative Evaluation

To better examine the ldGAN’s ability in both learning
aging patterns and keeping identity cues, we further perform a
quantitative analysis. For evaluating aging effect, we employ
the online face analysis tool of Face++ [49] to estimate ages
of both test faces (i.e., real faces) and their synthesized faces
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Fig. 4. Qualitative results obtained by using ldGAN. In the leftmost column the real age of each input face is shown.

TABLE IV

OBJECTIVE AGE ESTIMATION RESULTS (IN YEARS) OBTAINED BY FACE++ WITH s = 3

obtained by ldGAN. For each age group, we calculate the
mean and standard deviation of estimated ages. The results
are reported in Table IV. Although there exist deviation in

Face++’s estimated ages from actual ages, ldGAN keeps well
the overall aging trend. By comparing estimated ages of gener-
ated faces with those of real faces, we find in most age groups,
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TABLE V

OBJECTIVE FACE VERIFICATION RESULTS (CONFIDENCE) OBTAINED BY FACE++ WITH s = 3

Fig. 5. Ablation study results. Note that 1hotGAN employs neither LDL nor multi-scale D.

synthesized faces have very close ages to real faces. Therefore,
ldGAN successfully captures short-term aging patterns.

Objective face verification is also conducted using Face++
in order to check whether identity is well preserved during
face aging. We compare each test face with its corresponding
synthesized faces. A confidence value can then be obtained for
each comparison, indicating the similarity of two faces. The

confidence lies within [0,100]. Higher confidence indicates
higher possibility that two faces are from the same subject.
Finally, for each age group, we calculate the mean and
standard deviation of confidence over all test faces. The results
are shown in Table V. As can be seen, we achieve high
confidence for most age groups. Only when synthesizing faces
with Group 49 ∼ 51, we obtain a confidence lower than 93.
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TABLE VI

OBJECTIVE AGE ESTIMATION AND FACE VERIFICATION RESULTS OBTAINED BY FACE++ WITH s = 10

Fig. 6. Comparison with prior work: CAAE [22] and IPCGANs [24]. In the leftmost column we give input faces and their real ages.

We guess this is caused by the very limited training data, which
has only 1,600 samples.

C. Ablation Study
To more completely evaluate our approach, we further

present three ablation studies. The first is used to exam-
ine the contribution of label distribution learning, which is
performed by first replacing ALD with one-hot encoding

and then replacing LDL with softmax loss-based age group
classification. The second study is performed by using a
single-scale discriminator in order to check the contribution
of multi-scale discriminators. Finally, we abandon both LDL
and multi-scale discriminators, i.e., directly using 1hotGAN
investigated in Section III.

The results are given in Figure 5. As observed, without
LDL, generated faces show lower quality. Many faces present
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artifacts and blurry parts. Similar artifacts and blurry parts
are also found in faces synthesized by 1hotGAN. When using
a single-scale discriminator, there appear beard-like things on
female faces. This is especially the case for faces from Groups
28 ∼ 30, 31 ∼ 33 and 40 ∼ 42. ldGAN instead achieves much
better results. The use of label distribution learning enables
our approach to fully utilize limited training data, so that
photorealistic faces can be achieved. And adopting multi-scale
discriminators further enhances our label distribution learners’
ability.

D. Comparison With Prior Work

Now, we compare our approach with prior work. We select
CAAE [22] and IPCGANs [24] as the control methods. On one
hand, both approaches adopt one-hot labels as age encoding.
On the other hand, their codes are made publicly available
on Github, so that we can easily implement both methods
for our short-term aging task. We show qualitative results
in Figure 6. As observed, CAAE does not perform well
in preserving identity. Aging effect is not well generated
either. Moreover, faces synthesized by CAAE lack fine details.
Compared with CAAE, IPCGANs show superiority in keeping
identity cues and generating fine details. However, they are
prone to generate old faces with blurred eyes. For synthesis
of young male faces, if input faces have beard and mustache,
IPCGANs perform poorly when removing them. In contrast,
using ldGAN obtains more visually plausible results. We fur-
ther quantitatively check the ability of CAAE and IPCGANs in
aging effect generation and identity preservation. The results
are reported in Tables IV and V. As can be seen, CAAE
performs poorly in both learning short-term aging patterns
and keeping identity cues. IPCGANs show a little higher
confidence values than ldGAN in most age groups. However,
they perform worse in capturing short-term aging patterns
for most age groups. It should be noted that the training
of IPCGANs suffers from model collapse. The results of
IPCGANs reported here are obtained before model collapse.

E. Generalization Capability Study

Finally, we examine the generalization capability of ldGAN
in synthesizing long-term aging sequences with s = 10. From
Table III, we can see that when s = 10 is used, ALD with
σ = 2 gets very close to one-hot encoding. As a result,
the contribution of label distribution learning can be omitted.
However, we have enough training data for each age group
when s = 10 is adopted. In Figure 7, we report qualitative
results obtained by using ldGAN as well as results achieved
by CAAE [22] and IPCGANs [24]. Quantitative results are
given in Table VI. As observed, when there is enough training
data for each age group, CAAE still performs poorly in both
keeping identity cues and learning aging patterns. It fails
to generate face images with fine details. By comparison,
IPCGANs perform much better in both aging effect generation
and identity preservation. However, when synthesizing images
for the last age group, the generation quality gets lower. From
Table VI, we can see that ldGAN achieves higher verification
confidence than IPCGANs in most age groups. For aging

Fig. 7. Long-term aging results with s = 10. In the leftmost column we
give input faces and their real ages.

effect comparison, we average the age difference between
synthesized and real faces over all age groups. The mean age
difference of IPCGANs is 1.02, while ldGAN gets smaller
difference 0.63. Note that even with enough training data,
IPCGANs still suffers from model collapse. Its results are thus
obtained before model collapse. By comparing Table VI with
Tables IV and V, we can see that when s = 10 is adopted,
ldGAN achieves better performance in both learning aging
patterns and preserving identity cues. Thus, when there is
adequate training data, ldGAN can generate smooth long-term
aging sequences.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated both long-term and short-
term facial age synthesis, by employing a state-of-the-art GAN
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architecture. The presented experimental results showed how a
GAN-based model can generate smooth aging sequences with
high-quality images, if a large time span is adopted. However,
the same model fails to produce satisfactory results when a
short time frame is adopted. In order to improve the quality
of the face images produced by short-term age synthesis,
we proposed a novel GAN-based approach, where each sample
is associated with an age label distribution rather than a single
age group. The proposed approach works well even when there
is a limited amount of training data, owing to the use of ALD.
In addition, unlike the one-hot encoding, where age groups
are considered as if they were independent from one another,
ldGAN can well capture the correlation among different age
groups. The use of multi-scale discriminators further makes the
proposed label distribution learners more robust. In order to
evaluate ldGAN, both qualitative and quantitative experiments
were performed. The obtained results well demonstrated the
effectiveness of the proposed approach for both capturing
short-term aging patterns and handling the paucity of training
data.

Since the MORPH database includes only faces of individ-
uals with ages from 16 to 77 years old, we cannot investigate
age progression of children and teenagers with this database.
However, facial growth shows large differences from birth
to adulthood. Modeling age progression of young faces in a
short-term way, thus, will be more significant. In the future,
we expect more efforts devoted to both collecting a large
number of young faces labeled with accurate ages and studying
age progression of the face appearance for children and
teenagers in a short-term aging framework.
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