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STAF: 3D Human Mesh Recovery From Video
With Spatio-Temporal Alignment Fusion
Wei Yao , Hongwen Zhang , Yunlian Sun , and Jinhui Tang , Senior Member, IEEE

Abstract— The recovery of 3D human mesh from monocular
images has significantly been developed in recent years. However,
existing models usually ignore spatial and temporal informa-
tion, which might lead to mesh and image misalignment and
temporal discontinuity. For this reason, we propose a novel
Spatio-Temporal Alignment Fusion (STAF) model. As a video-
based model, it leverages coherence clues from human motion by
an attention-based Temporal Coherence Fusion Module (TCFM).
As for spatial mesh-alignment evidence, we extract fine-grained
local information through predicted mesh projection on the
feature maps. Based on the spatial features, we further introduce
a multi-stage adjacent Spatial Alignment Fusion Module (SAFM)
to enhance the feature representation of the target frame.
In addition to the above, we propose an Average Pooling Module
(APM) to allow the model to focus on the entire input sequence
rather than just the target frame. This method can remarkably
improve the smoothness of recovery results from video. Extensive
experiments on 3DPW, MPII3D, and H36M demonstrate the
superiority of STAF. We achieve a state-of-the-art trade-off
between precision and smoothness. Our code and more video
results are on the project page https://yw0208.github.io/staf/.

Index Terms— 3D human mesh recovery, temporal coherence,
feature pyramid, attention model.

I. INTRODUCTION

AS A promising technology, video-based human mesh
recovery can be used for many tasks such as motion

monitoring, virtual try-on, VR, etc. It also contributes to
traditional human-centered computer vision research, such
as action recognition [2] and pose estimation [3], [4], [5].
Therefore, it has received wide attention from the research
community and has been developed rapidly in recent years [6].
Especially after the emergence of parametric models that can
describe the human body surface in detail (e.g., SMPL [7]),
many excellent models have emerged and achieved good
results with the development of deep learning.

Recovering the 3D human body from a video is a more
complex problem than recovering it from a single image. Many
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video-based works tried to find effective methods to obtain
temporal information. Currently, there are mainly convolu-
tional neural network (CNN) and recurrent neural network
(RNN) for learning temporal information [1], [8], [9], [10],
[11]. It should be noted that both CNN and RNN are better
at learning local information [12], [13] but have difficulty
when handling long-range temporal dependencies. Therefore,
finding a simple and efficient mechanism for acquiring tem-
poral information is necessary. To leverage temporal cues, the
mainstream methods simply fuse the global features extracted
from ResNet [14] or HRNet [15] and then use this feature
to get the final result. According to previous works [15],
[16], [17], [18], [19], feature map tends to retain high-level
information after reducing the spatial dimension while ignor-
ing spatial information as well as local details. There are
many studies attempting to solve this challenge using pixel-
level information, such as body part segmentation [20], [21],
[22], UV map [23], [24], [25], [26] and optical flow [27],
[28], [29]. But these usually make the model too bloated
and still challenging to learn the body structure prior and
local details. Moreover, existing video-based and image-based
models typically showed severe jitter when applied to video.
And this jitter phenomenon cannot be effectively mitigated
with the increase in recovery precision. Although there are
previous works that attempted to solve this problem, they all
sacrifice the recovery precision to some extent. So, achieving
a better balance between precision and smoothness is still a
difficult challenge.

To address these issues, we propose a spatio-temporal align-
ment fusion (STAF) model for recovering 3D human meshes
from videos. In STAF, a feature pyramid is introduced into the
video domain for 3D human reconstruction as the backbone
to preserve the original information to the maximum extent.
Based on this, we propose a temporal coherence fusion module
(TCFM), a spatial alignment fusion module (SAFM) and an
average pooling module (APM) for the three problems. In this
way, STAF can fully utilize the spatio-temporal information of
the input image sequence and achieve a breakthrough in both
precision and smoothness with the support of APM. As shown
in Fig. 1, STAF outperforms the previous SOTA method in
both terms of precision and smoothness.

Specifically, TCFM no longer uses global features as input.
Instead, we collect features as input by grid projection on
high-dimensional spatial features. This method preserves the
original spatial position information to a large extent. In the
3D human reconstruction task, the so-called temporal infor-
mation refers more to the consistency of human shape and

1051-8215 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on January 21,2025 at 03:14:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0001-5857-5531
https://orcid.org/0000-0001-8633-4551
https://orcid.org/0000-0002-4696-8848
https://orcid.org/0000-0001-9008-222X


YAO et al.: STAF: 3D HUMAN MESH RECOVERY FROM VIDEO WITH STAF 10565

Fig. 1. Comparison with traditional video-based model MEVA [1]. We choose MPJPE and acceleration error to measure the model’s performance in space
and time. Thanks to our spatio-temporal fusion mechanism, our STAF surpasses MEVA in both metrics.

Fig. 2. The difference between traditional video-based models and our STAF. STAF has an additional spatial encoder compared to traditional video-based
models. As a result, STAF can obtain more comprehensive refined features and achieve higher recovery precision.

the continuity of pose changes. Therefore, it is necessary
to retain the original spatial position information for better
learning of the temporal information. When choosing which
network architecture to use for temporal encoding, we adopt a
self-attention mechanism that is better at establishing long-
range dependencies. However, the traditional self-attention
module encodes the features before calculating the attention
weights. As shown in Mcon of Fig. 4, we find that this process
could destroy the original feature space and instead make it
difficult to establish the correct temporal dependencies. For
this reason, we add the other self-similarity matrix Msim ,
which can guide TCFM to encode the temporal information
better and thus get more accurate initial human meshes. These
initial human meshes enable SAFM to obtain better spatial
information about the human body in the following step.

As shown in Fig. 2, compared to traditional models, STAF
goes beyond the fusion of temporal information, and further
incorporates spatial information. There are two crucial points
about SAFM: the extraction of human spatial features, and the

other is how to enhance the feature representation of the target
frame. We use the projection of the initial human meshes on
the feature maps to obtain human spatial features. This has
two advantages. First, the mesh alignment cues can be used
to correct the result parameters effectively. More importantly,
since the features are extracted only in the human body region
of the feature map, the model can obtain richer semantic
information and focus more on informative human areas by
reducing interference from the background. After getting the
human spatial features, we need to use them to enhance the
feature representation of the target frame. Considering that
adjacent images’ human shape and pose are more similar,
we adopt a multi-stage attention-based adjacent feature fusion
mechanism, as shown in Fig. 5. The human spatial information
enables STAF to obtain a more precise recovery mesh of the
target frame.

But as mentioned earlier, like other traditional models, even
though STAF utilizes spatio-temporal information to improve
the accuracy further, the smoothness is still not sufficiently
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improved. The reason for this is that the model cannot take
into account the whole input sequence but focuses only on
improving the recovery precision of the target frame. This
leads to a lack of transition from frame to frame, which
eventually causes frequent and noticeable jitter in the recov-
ered human body. For this reason, we propose the APM that
allows the model to focus on the entire input sequence, using
each frame’s information to generate results that match the
human motion in the sequence. This module can significantly
improve the smoothness without affecting accuracy. It is worth
mentioning that it is also applicable to many existing models.
At last, we summarize our contributions as follows:

• For the first time, multi-scale spatial features are intro-
duced into the 3D human mesh recovery task in the video
domain. We propose a novel spatio-temporal alignment
fusion model to exploit both spatial and temporal infor-
mation. We propose an effective spatio-temporal feature
interaction and integration mechanism that enables the
model to take full advantage of motion continuity cues
and human spatial information to recover more precise
3D human mesh.

• We find an effective method to significantly improve the
smoothness of the estimated mesh sequences from the
video. We find that the main reason for the discontinuity
of recovered human motion is that traditional models
usually focus only on the target frame but not the
overall sequence. With our proposed APM, we achieve
a remarkable reduction in acceleration error and demon-
strate experimentally that the method is somewhat
generalizable.

• Extensive experiments on three standard benchmark
datasets show that STAF achieves state-of-the-art per-
formance with a better trade-off between precision and
smoothness.

II. RELATED WORK

A. Image-Based 3D Human Mesh Recovery

Research on 3D human reconstruction started early and
saw explosive growth after the emergence of human para-
metric models [7], [30], [31] and human datasets with 3D
labels [32], [33], [34]. The first works in this field were
based on optimization. These optimization-based methods let
the parametric model constantly fit the obtained 2D labels
(including silhouettes, 2D joint points, part segmentation, etc.)
together with the human pre-existing prior [35], [36], [37].
In 2018, Kanazawa et al. proposed the HMR model [38],
which was the first end-to-end regression-based model with
a single monocular image as input. Using ResNet50 [14]
to extract features, HMR used an Iterative Error Feedback
(IEF) loop regressor to get the final result and further adopted
an action discriminator to ensure the reasonableness of the
output 3D reconstruction. Since regression-based models have
an absolute speed advantage as well as broader applicability
than optimization-based models, a large number of excellent
regression-based models [23], [39], [40], [41], [42], [43], [44],
[45], [46] have emerged since then. However, image-based
methods have their inherent limitations. Even compared to

the latest PQ-GCN [46], which was carefully designed, our
video-based STAF not only exceeds it in terms of accuracy
but also offers much better smoothness.

While regression-based models have proliferated,
optimization-based models have not fallen out of favor.
Instead, they are combined with regression-based models to
obtain models that can generate more accurate human body
mesh [47], [48]. Such models generally used regression-based
models to generate better initial results and then used
the optimization process to obtain more accurate results.
Researchers usually use such models to add 3D pseudo-labels
to 2D training datasets, which can significantly facilitate the
training of their models.

B. Video-Based 3D Human Mesh Recovery

In terms of practical applications, the application of 3D
human reconstruction will be more based on videos, and the
continuity of human motion contains rich temporal informa-
tion that can be used. As a result, several video-based models
have emerged in recent years. Currently, there are two main
categories: sequence-to-sequence [1], [9], [11], [28], [49],
where multiple images are input andes all the corresponding
human meshes are output, and sequence-to-single-frame [8],
[10], [50], [51], where multiple images are input but only
the result of the target frame is output. Earlier, there was
Arnab et al. [28], which used the entire video as input, gen-
erated initial results using an off-the-shelf 2D joint keypoint
detector [52] and a 3D human reconstruction model [38],
and then continuously optimized the results using temporal
coherence. There are also methods extracting features that
allow models to learn temporal information adaptively. For
example, HMMR [10] used full convolutional networks to
encode temporal information, and MEVA [1] adopted recurrent
neural networks to learn. Among them, a classic work is
VIBE [11], which added a GRU-based module to encode
temporal information based on HMR [38] and further designed
a temporal version of motion discriminator to ensure the
rationality of the output human mesh. With the rise of Trans-
former [12], the model MAED [49], which used an attention
mechanism to learn the continuity of each joint movement,
achieved excellent performance.

C. Temporal Continuity of 3D Human Mesh Recovery

When 3D human reconstruction is transferred from a single
image to a video, it is not enough to emphasize only the
accuracy of the reconstructed mesh. In fact, the visual dis-
comfort caused by the incoherence of human motion is even
more pronounced than the inaccuracy. Since the acceleration
error proposed by HMMR [10] to measure the smoothness
of the recovery results, there have been many works [1],
[8], [11], [49], [51] adopted this measure. Theoretically, the
more accurate the human reconstruction results are, the lower
the acceleration error and the smoother the estimated human
motion. However, in practice, with the current accuracy, it is
not yet possible to significantly reduce the acceleration error
by increasing accuracy. Let us see two structurally simi-
lar models, MEVA [1] and VIBE [11]. MEVA sacrificed
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Fig. 3. The overall framework of STAF. We input T images and output the reconstruction result of the target frame I⌈T/2⌉ with a red border. We employ
a feature pyramid to retain multi-scale spatial information and use projection down-sampling to obtain fine-grained local information. Also, to make full use
of the spatio-temporal information, we add an average pooling module, a temporal coherence fusion module and a spatial alignment fusion module. The
temporal coherence fusion module is described in Sec. III-C.1, and the spatial alignment fusion module is in Sec. III-C.2. Please refer to Sec. III-D for the
entire process of our method.

reconstruction accuracy to improve smoothness, and VIBE
improved accuracy but dramatically increased acceleration
error. As far as the latest work is concerned, MAED [49]
improved the recovery accuracy to a very high level, but
the fluency was much poorer than TCMR [8] and MPS-
Net [51]. These two works improved the smoothness to an
unprecedented level without reducing accuracy. On the one
hand, TCMR provided a method to remove the residual
connections of features and reduce the feature dependence on
the current frame. On the other hand, MPS-Net experimentally
demonstrated that its feature integration module named HAFI
could significantly reduce acceleration error. Inspired by the
above two works, we go a step further and propose a more
straightforward method to reduce the dependence on the
target frame and significantly improve the smoothness without
compromising accuracy.

III. METHOD

The whole framework of STAF is shown in Fig. 3. With
features extracted from input images, we first go through APM
to weaken the influence of the target frame but strengthen
the model’s dependence on the whole sequence. After that,
TCFM is designed to learn the temporal information to get
initial human meshes. With these initial body meshes, we can
obtain finer spatial alignment cues. Next, we propose SAFM
to fully integrate these cues to strengthen the target frame’s
body spatial representation and further correct its recovery
result. Finally, the fine-grained local information is extracted
by projection sampling and fed into the regressor to obtain
the final result. In this section, we present the details of
STAF. We first introduce some basic knowledge, including

the SMPL model and feature sampling. Then we show two
crucial submodules, TCFM and SAFM, and summarize the
whole framework at last.

A. 3D Human Representation

In this work, a parametric model called SMPL [7] is used
to encode the 3D surface of the human body, which is one of
the most widely used 3D human models. In total, the SMPL
model parameters 2 consist of three parts: shape β, pose θ ,
and camera π . The shape parameters β ∈ R10 consist of the
first 10 coefficients of the PCA shape space, including the
body weight, height, and the proportion of each limb. The pose
parameters θ ∈ R3J use the 3D rotation of each joint point
relative to its parent joint to describe the pose of the human
body, where J = 23. After obtaining θ and β, we can input
them to a pre-trained function to obtain M (θ , β) ∈ R3×N ,
which represents the 3D coordinates of the N vertices of the
body surface, where N = 6890. From this, we get a precise
description of the human surface. Also, a global rotation R ∈

R3×3, scale s ∈ R1, and translation t ∈ R2 can be obtained
using camera parameters π based on weak perspective camera
model. These three parameters are mainly used to project the
3D object onto the 2D image. The 3D object can be the human
mesh vertices or 3D joints. Its specific usage will be described
in detail in later sections.

B. Feature Down-Sampling

To facilitate understanding, the feature down-sampling of
our work is first introduced with a single frame input as an
example.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on January 21,2025 at 03:14:29 UTC from IEEE Xplore.  Restrictions apply. 



10568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

As shown in Fig. 3, we first input the image I into the
feature extractor without the last average pooling to get the
feature φs

0 ∈ RC0×W0×H0 . After that, the spatial features φs
0

are fed into a set of deconvolutional networks {DeConvk}
3
k=1

to obtain
{
φs

k ∈ RCk×Wk×Hk
}3

k=1, i.e.,

φs
k = DeConvk

(
φs

k−1
)
, for k > 0. (1)

Then we use the 2D projection Xk of the obtained 3D
human mesh vertices M

(
θk, βk

)
onto the feature map φs

k to
obtain point-wise features φ

p
k ∈ RCk , i.e.,

φm
k = ⊕

{
f
(
φ

p
k (xk−1)

)
, for xk−1 in Xk−1

}
, k > 1 (2)

where ⊕ represents concatenation, φ
p
k (xk−1) denotes acquir-

ing φ
p
k according to xk−1 using bilinear sampling, and f (·) is

the MLP that reduces the channel dimension from Ck to Cm .
Then we get the feature φm

k ∈ RCm∗Ñ , where Ñ is the number
of mesh vertices.

When k = 0, it is worth noting that the information density
of φs

0 is very high. As illustrated in Fig. 7, the 2D projection of
the initial human mesh 20 obviously does not match the actual
human body area. Performing projection down-sampling on
φs

1 thus cannot help the model to focus more on the human
body area. In addition, the global information of the image
is crucial to estimate the camera parameters. So we choose
the grid sampling method to extract global features, when
k = 1. Grid sampling is that we define a 21 × 21 grid to
acquire point-wise features φ

p
1 . The other steps are the same

as projection down-sampling.
As for how Xk is obtained, you can refer to this formula

Xk = 5
(
D

(
M

(
θk, βk

)))
, for k > 1, (3)

where 5 is an orthographic projection function based on
camera parameters πk , and D (·) represents down-sampling
Ñ vertices from N human mesh vertices.

C. Spatio-Temporal Alignment Fusion

1) Temporal Coherence Fusion Module: For video-based
models, an important design is how to implement feature
interaction to capture temporal coherence effectively. Inspired
by the non-local module in [13] and [51], we introduce a
lightweight temporal coherence fusion module, as illustrated
in Fig. 4. TCFM is a further improvement on the commonly
used transformer structure. The main difference is that we add
an extra correlation matrix Msim . The traditional transformer
usually encodes the features before computing the correlation
matrix, as we get Mcon in Fig. 4. However, from the visu-
alization of Mcon , the network does not correctly establish
the temporal coherence. The traditional transformer does not
work as expected but only focuses on some frames with more
information. Therefore, we additionally add Msim for steering
the model so that each frame is more dependent on frames
closer to itself and less on frames further away. As shown
by Msim and Mg in Fig. 4, the diagonal region is brighter,
meaning TCFM learns the temporal coherence between frames
more efficiently than traditional transformer.

The interaction objects of our temporal coherence fusion

module are
{
φm

1,t

}T

t=1
, where T is the number of input frames.

Fig. 4. The structure of the temporal coherence fusion module. With T
features as input, the module outputs T temporal refined features. We use
TCFM to get initial human meshes. Note

{
20,t

}T
t=1 is set as the mean 2

following [38]. As for the correlation matrix, it calculates the coherence
between the frames by multiplying two feature matrices. The correlation
matrix is a T ×T matrix. The element of the i-th row and j-th column represent
the coherence between the i-th frame and the j-th frame. Larger values indicate
stronger coherence. The brighter color indicates a larger value.

As shown in the Fig. 4, the feature matrix Zinp ∈ RT ×S

composed of
{
φm

1,t

}T

t=1
is input to the module, where S

is the feature length of φm
1,t . We first input Zinp to three

convolutional networks Q, K, V to obtain refined feature
matrices

{
Zq , Zk, Zv

}
∈ RT ×

S
m . After that, we obtain two

correlation matrices Mcon = so f tmax
(

Zq Z T
k

)
Msim = so f tmax

(
Zinp Z T

inp

) ∈ RT ×T . (4)

From the visualization of the correlation matrix Mcon in Fig. 4,
we can see that each frame’s features are almost equally
similar to the other frames’, which is clearly not intuitive.
Theoretically, every single frame should be more similar to the
frames closer to itself. Therefore, for better feature refinement,
higher weights should be given to more similar frames in the
correlation matrix. In our work, in addition to Mcon , we further
use Msim to guide temporal coherence learning, i.e.,

Mg = so f tmax (F (concat (Mcon, Msim))) , (5)

where F (·) is a CNN that make concat (Mcon, Msim) ∈

R2×T ×T downscale to RT ×T . This module effectively
enhances the ability of the model to learn long-range temporal
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features. Finally, we get the refined features Zre f by the
following formula

Zre f = Zinp + U
(
Mg Zv

)
, (6)

where U (·) is a convolutional layer, which let Mg Zv ∈ RT ×
S
m

upscale to RT ×S . With that, we can use the residual connection
as in previous works. After that, we divide Zre f into T features
and feed them into the regressor separately to obtain a set of
initial body meshes. These initial body meshes will be used to
obtain spatial alignment clues and human spatial information
for the next module SAFM.

2) Spatial Alignment Fusion Module: Traditional video-
based models often stop at exploiting temporal information.
To overcome this issue, we propose SAFM to utilize the spatial
information of each frame. “Spatial” is reflected in the fact that
we do not directly use the full image information as input but
further filter the spatial pixel alignment information for fusion.
“Alignment” has two meanings. On the one hand, it means
extracting features by aligning mesh vertices to feature maps,
which include mesh-image alignment information. On the
other hand, it implies the ability of SAFM to enhance the
feature representation of target frames by aligning spatial
information. The most significant difference between spatial
information and the previous temporal information is also
reflected here. When fusing the temporal information in the
first stage, the focus we consider is the temporal coherence
of the input frames. So, we take the full image information
as input. However, in the second stage, we need more fine-
grained information, i.e., spatial features of the human body.
The pose of the human body tends to be different from
frame to frame, but the shape is kept consistent. Meanwhile,
the human body poses in neighboring frames tend to have
some correlation. Based on the above discussion, we design
a unique spatial feature fusion approach. SAFM can thus
enhance the spatial feature representation of the target frame
with supplement of the whole sequence, and obtain more
accurate recovery results. The structure of SAFM is shown
in Fig. 5.

We illustrate how this module works with an input

sequence of 9 features
{
φm

2,t

}9

t=1
, as we do in the final

version of STAF. Following [51], we set each group to
contain three frames, which has been shown to be the
most efficient. As shown in Fig. 5, the feature sequences{
φm

2,1, φm
2,2, · · · , φm

2,9

}
are first divided into three groups{

φm
2,t−1, φm

2,t , φm
2,t+1

}
, where t = 2, 5, 8. We then input each

group into an attention module to obtain the integrated features{
φm

2,p, φm
2,c, φm

2, f

}
.

{
φm

2,p, φm
2,c, φm

2, f

}
represent features of

the past, current and future frames, respectively. After that,
we feed

{
φm

2,p, φm
2,c, φm

2, f

}
into the attention module again to

get the final refined feature φm
2,re f for the target frame. Note

that all the attention modules mentioned above share the same
network architecture and weights when deployed in practice.

Next, we describe how the attention module works. With{
φm

2,t−1, φm
2,t , φm

2,t+1

}
as input, the attention module first

reduces the dimension of each feature through a fully

Fig. 5. The structure of spatial alignment feature fusion module. Take the
example of entering nine features

{
φm

2,1, φm
2,2, · · · , φm

2,9

}
. Start with a group

of three features and integrate them into one feature through the attention

module. Then the three integrated features
{
φm

2,p, φm
2,c, φm

2, f

}
are integrated

again into one feature φm
2,re f . We use φm

2,re f to recover the 3D human mesh
of the target frame.

connected (FC) layer f c (·), i.e.,

φm
2,concat = ⊕

{
f c

(
φm

2,t−1
)
, f c

(
φm

2,t
)
, f c

(
φm

2,t+1
)}

, (7)

where ⊕ represents concatenation. The resized feature
φm

2,concat is then passed through another three FC layers with
tanh activation to reduce the channel size to 3. We add a
softmax activation in the end to calculate attention weights
{α1, α2, α3}. Finally, we get the integrated feature

φm
2,integ = α1φ

m
2,t−1 + α2φ

m
2,t + α3φ

m
2,t+1, t = 2, 5, 8 (8)

where φm
2,integ are the features

{
φm

2,p, φm
2,c, φm

2, f

}
mentioned

above. For example, φm
2,integ is φm

2,p when t = 2.
We use the features themselves to obtain attention weights,

and then apply the attention weights to compute a weighted
sum of the original features. This attention module fully
preserves the spatial information of the original features,
allowing this design to be embedded into other models without
destroying the feature space. And this module can effectively
tell the model which frame should be biased to integrate
features better. It is worth mentioning that this multi-level
integration approach considers only adjacent frames for each
integration. Without such a multi-level design, it would get
difficult to establish long-range spatial dependency. More
importantly, model sizes would expand dramatically when
the input sequence length gets too long. By adopting such a
multi-level integration mechanism, SAFM can accommodate
various input lengths.
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D. The Overall Model

At the end of this section, we present the overall structure of
STAF, as shown in Fig. 3. Given a sequence of images {It }

T
t=1,

a set of spatial features
{
φs

0,t ∈ RC0×W0×H0
}T

t=1
is obtained

after a CNN-based encoder. We mark the target frame with
red borders in Fig. 3. Then comes an essential operation, i.e.,

φs′
0,⌊T/2⌋

= Avg
({

φs
0,t

}T
t=1

)
, (9)

where Avg means average pooling. This module APM enables
the model to rely less on the feature of the target frame I⌈T/2⌉

but take full advantage of the information of each frame. The
feature obtained after average pooling is used to replace the
original feature of the target frame. For convenience, φs′

0,⌊T/2⌋

continues to be named φs
0,⌊T/2⌋

.

As described in Fig. 3, the features
{
φs

0,t

}T

t=1
are fed into

the deconvolution network to get features
{
φs

1,t

}T

t=1
. And

then
{
φs

1,t

}T

t=1
are sampled by the grid to obtain the features{

φm
1,t

}T

t=1
. Before sending the features into the regressor,

we first feed them into the temporal coherence fusion module
to fully learn the motion continuity dependencies. For more
details, please refer to Sec. III-C.1. This allows STAF to
achieve not only better initial mesh recovery

{
21,t

}T
t=1, but

also more accurate projection sampling used in the next step.

The features
{
φs

1,t

}T

t=1
continue to be fed into the decoder

consisting of deconvolution to obtain the feature sequence{
φs

2,t

}T

t=1
. Unlike the former step, for the features

{
φm

2,t

}T

t=1
obtained by projection sampling, we input them into the spatial
alignment fusion module to obtain the feature φm

2,re f for the
target frame. Owing to further deconvolution and projection

sampling, the features
{
φm

2,t

}T

t=1
contain rich fine-grained local

information. The operation of multi-level adjacency integration
can effectively enhance the mesh-alignment cues and enrich
the human body information of φm

2,⌈T/2⌉
. Finally, we feed

φm
2,re f into the regressor together with the SMPL parameters

21,⌈T/2⌉ obtained in the previous step to get the recovery result
22,⌊T/2⌋ of the target frame.

For the last update of the SMPL parameters, we first send
the features φs

2,⌈T/2⌉
into the decoder to get the features

φs
3,⌈T/2⌉

. Then we apply projection down-sampling to it to
get the features φm

3,⌈T/2⌉
. Finally, φm

3,⌈T/2⌉
concatenated with

SMPL parameters 22,⌈T/2⌉ is passed through the regressor to
get the final result 23,⌈T/2⌉.

E. Loss Function

For model training, we use three basic loss functions within
the 3D human mesh recovery domain. Following TCMR [8],
the first is the loss function Lsmpl of the SMPL param-
eters. It calculates the L2 loss between the predicted and
ground-truth SMPL parameters. It should be noted that the
datasets with the ground-truth SMPL parameters are very
scarce. In order to take the vast datasets with ground-truth 2D

and 3D joint coordinates into consideration, we introduce the
other loss functions L2D and L3D . The 3D joint coordinates
can be obtained directly from the SMPL parameters, i.e.,
X (θ , β) ∈ R3×P , where P is the number of joints. For the
2D joint coordinates x , we adopt the projection of 3D joints
as follows:

x = s5 (R X (θ , β)) + t (10)

where 5 is a projection function and R, s, t are obtained
from camera parameters. In conclusion, our loss function can
be summarized as

L = λsmpl

∥∥∥2 − 2̂

∥∥∥
2
+ λ3D

∥∥∥X − X̂
∥∥∥

2
+ λ2D

∥∥x − x̂
∥∥

2

(11)

where λsmpl , λ3D and λ2D are weights and would be 0 when
relevant annotation is unavailable.

IV. EXPERIMENTS

In this section, we describe the implementation details and
experimental results. A series of experimental demonstrations
and visualization results are also reported to prove the validity
of the innovative points in our work.

A. Datasets

1) COCO: Common Objects in Context [53] is a large-scale
image dataset widely used for various computer vision tasks
such as object detection, image segmentation, and image
captioning. It is provided by Microsoft and consists of over
330,000 images, each with detailed annotations. For our task,
we primarily utilize the part of the COCO that focuses on
human subjects. COCO provides 2D joint location labels. And
based on this, we use EFT [48] to add pseudo labels, such as
3D joint positions and SMPL parameters, to the dataset. Since
COCO is not a video dataset, we use it to train our base model
only, allowing the base model to acquire the initial ability to
extract features about the human body.

2) LSP & LSP-Extended: Leeds Sports Pose [54] is a
classic benchmark dataset used for human pose estimation.
It consists of training and test sets, each containing 1,000
images with 2D joint labels. Later, LSP-Extended [55] is intro-
duced, which adds an additional 10,000 images for training.
We only use the training set of LSP and LSP-Extended for
training our base model. Additionally, we utilize pseudo-labels
generated by EFT to enhance supervision.

3) Human 3.6M: As a widely used 3D human body dataset,
Human 3.6M [32] has been used as a benchmark dataset by
many works for its large data volume and rich 3D labels.
It should be noted that this dataset is collected indoors. It is
thus often used together with in-the-wild datasets. However,
its abundant 3D labels, stable objects and scenes are all useful
to get human prior. Following previous work, we use subsets
S1, S5, S6, S7, S8 for training and S9, S11 for testing. Since
the videos in Human 3.6M are at 50 fps, which causes data
redundancy, we extract frames at a frame rate of 25 fps. Note
that the SMPL parameters obtained from Mosh are no longer
publicly available due to legal reasons. Therefore, we use
the pseudo SMPL labels provided by NeuralAnnot [56] to
supervise the training following [8] and [51].
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Fig. 6. Qualitative comparison between STAF and two latest works (MPS-Net [51] and TCMR [8]). Traditional video-based models usually pursue only
temporal coherence but miss spatial information, which might result in misalignment between the recovered mesh and image. Our STAF instead can effectively
solve this problem.

Fig. 7. Visualization of output results of STAF regressors for each stage.
It shows how the final results are obtained from SMPL mean parameters after
adjustment by the three regressors.

4) MPII: MPII (Max Planck Institute for Informatics) [57]
is a large-scale image dataset used for human pose estimation.
This dataset is provided by the Max Planck Institute for
Informatics in Germany and contains approximately 25,000
images along with corresponding pose annotations. We only
use the images with complete 2D joint labels for training.

5) 3DPW: 3D Human Pose in the Wild [33] is a challenging
dataset, since its data is collected from both indoors and
outdoors. This dataset provides 3D joint coordinates, so we use
it to enhance the model’s adaptability to complex situations.
Also, because it is very challenging, it is the main dataset for
our experimental evaluation. We test both models trained with
and without 3DPW to demonstrate the generalization ability
of STAF.

6) MPII3D: MPI-INF-3DHP [34] is also a dataset with 3D
joints coordinates. It acquires ground-truth labels through a
multi-camera marker-less motion capture system. It includes
data obtained from indoors and outdoors, which is also a very
tough dataset. And more and more works use it to perform
experimental evaluation. In our experiment, we use MPII3D
for both training and testing.

7) Insta: InstaVariety [10] is a very large dataset with 2D
labels, although its 2D joint coordinates are pseudo-labels gen-
erated by OpenPose. Its videos are collected from Instagram,
so it is very content-rich and can complement the shortage of
other datasets. We use it to perform weakly supervised training
and enhance the generalization ability of the model.

8) PoseTrack: PoseTrack [58] is a multi-person video-based
dataset with 2D labels. Although it is intended to provide
a benchmark for pose estimation and multi-person tracking,
we use it for training to increase the amount of training data.

Due to the two-stage training process of our model, the
datasets used in each stage are not entirely the same. In the
first stage, we train the base model with single-frame inputs,
allowing us to utilize some nonvideo datasets. Following [59],
we use COCO [53], LSP [54], LSP-Extended [55], Human
3.6M [32], MPII [57], and MPII3D [34]. In the second
training stage, we begin training the complete version of STAF,
which requires video datasets. In addition to the previously
mentioned Human 3.6M and MPII3D, we also incorporate
3DPW [33], Insta [10], and PoseTrack [58] for training, aiming
to complement the limited training data. Overall, our training
data volume remains consistent with previous works. Follow-
ing previous works, we evaluate our approach in 3 classic
benchmarks, i.e., 3DPW, MPII3D and Human 3.6M.

B. Implementation Details

We choose Resnet50 [14] without the last average pooling
as the encoder, which takes 9 images as input. It is worth
mentioning that, in order to recover human meshes for all
frames of a video, we choose to use a repeated set of 9 images
as input for the first 4 frames and the final 4 frames. Since
the image size is 224 × 224, the size of initial spatial features{
φs

0,t

}9

t=1
is 2048×7×7. As for

{
φs

1,t , φs
2,t , φs

3,t

}9

t=1
, we keep

their channel length constant, but their width and height are
{14 × 14, 28 × 28, 56 × 56}.

For the first regressor, since we use 21 × 21 grid sampling
and further reduce the channel length from Ck = 2048 to

Cm = 5, the size of the input features
{
φm

1,t

}9

t=1
gets

21 × 21 × 5 = 2205. For the other two regressors, we adopt
projection down-sampling to calculate the features. Since the
standard SMPL model generates too many vertices (6890), it is
impracticable to use all of them to perform projection down-
sampling. Following [43], we down-sample 6890 vertices to
get a sparse human body mesh with only 431 vertices. The
length of input features thus becomes 431 × 5 = 2155.

To summarize, the features
{
φm

1,t , φm
2,t , φm

3,t

}9

t=1
have lengths

of {2205, 2155, 2155}, resp.
In the classical HMR [38] regressor, the input features are

2048 in length and go through three loops. Our regressors
are consistent with the classical one but change the input
scale. Considering that the HMR regressor takes three loops,
we adopt a total of three regressors, too. Finally, in TCFM,
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TABLE I
COMPARISON WITH SOTA METHODS ON 3DPW AND MPII3D (* INDICATES TRAINING WITH 3DPW)

the three convolutional networks Q, K, V reduce the input
dimension 2205 by half to 1102.

Our base model consists of an encoder, three decoders,
a down-sampling network and three regressors. It serves as
our baseline for validating the effectiveness of the proposed
modules. Additionally, a pre-trained base model is also utilized
to provide a good initialization for STAF.

C. Training Details

1) Stage 1: The base model is first trained on COCO [53]
for 175 epochs with a batchsize of 64. In the second
stage, we train the base model on a mixed dataset for
60 epochs. Pseudo SMPL labels produced by EFT [48]
are used for supervising. The mixed dataset consists of
Human 3.6M(50%), and MPII3D(20%). And the remaining
30% of the mixed dataset is composed of COCO, LSP,
LSP-Extended and MPII. The whole process takes about
4 days.

2) Stage 2: When training STAF in our work, we use the
pre-trained base model to initialize the parameters, except for
the two modules TCFM and SAFM. Next, following [1], [8],
[11], and [51], we train the network on a mixed dataset consist-
ing of Insta, PoseTrack, Human 3.6M, 3DPW and MPII3D for
45 epochs with a mini-batchsize of 32. There are only 60% of
the training data with 2D labels. Note that Resnet50 is frozen
during this stage of training. Image preprocessing including
cropping method is referenced from VIBE [11] and MEVA [1].
The training and testing video frame rate is 25 to 30 frames
per second. Note that no data augmentation is applied in our
work. The model weights are updated by the Adam optimizer
with an initial learning rate of 0.00005. And the learning rate
is reduced by a factor of 10 when the best performance is
not updated for every 5 epochs. We train the model until
it converges. In practical training, it typically takes around
18 hours.

All training is performed on a single RTX 3090. The code
implementation relies on Pytorch [61].

D. Comparison With the State-of-the-Art Methods
To demonstrate the superiority of STAF, we first show

its evaluation results on 3DPW, MPII3D, and Human 3.6M.
We compare our model with other previous excellent models.
The results are shown in Table I and Table III. Following [1],
[8], [11], [51], we use four standard evaluation metrics. The
most comprehensive and representative metric is the mean
per joint position error (MPJPE). Another important metric
is PA-MPJPE, which expresses the Procrustes-aligned mean
per joint position error. It removes the error introduced by the
camera model by forcing the alignment. Note that PA-MPJPE
evaluates only the accuracy of the recovered joints. The
Per Vertex Position Error (PVE) calculates the error of the
mesh vertices, but it is so redundant that it often does not
match the actual qualitative result of the model. The units
of the above metrics are all in mm. Another key metric
is the acceleration error (Accel), which is calculated as the
acceleration error of the joint points in mm/s2. It can be
used to evaluate the smoothness of the reconstructed meshes.
Note that the above joints and vertices are all in three
dimensions.

We begin in Table I by summarizing the performance of
some outstanding works over the past three years on 3DPW
and MPII3D. These two datasets are chosen because they
contain challenging in-the-wild data. The performance on
these two challenging datasets can better demonstrate the
model’s robustness. As seen from Table I, the all-around
performance of STAF exceeds that of many previous SOTA
models. STAF achieves optimal performance on three key met-
rics: PA-MPJPE, MPJPE, and PVE. Compared with the latest
work MPS-Net, STAF reduces the MPJPE by 3.7 mm and
3.0 mm on 3DPW and MPII3D, respectively. As mentioned
earlier, in the past, it often has to sacrifice smoothness for
precision, as in VIBE [11], or conversely, sacrifice precision
for smoothness, as in MEVA [1]. STAF instead achieves
a better trade-off between precision and smoothness. Our
acceleration error remains very low while we achieve high
reconstruction precision. In terms of smoothness, STAF far
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TABLE II
COMPARISON OF NETWORK PARAMETERS AND MODEL SIZE

TABLE III
COMPARISON WITH SOTA METHODS ON H36M

exceeds image-based models and is second only to TCMR
and MPS-Net among video-based models. In Fig. 1, we ran-
domly select a video to test and plot the acceleration error.
As shown, our model avoids severe jitter suffered by tradi-
tional video-based models and reaches a new level of overall
smoothness.

In addition to this, STAF shows surprising generalizability.
The * in Table I indicates that the 3DPW training set is
used for training, and the absence of * indicates that it is
not used. From Table I, we can see that the PA-MPJPE
and MPJPE of the previous models on 3DPW increase by
3.65-5.88% and 8.7-12.8%, respectively, when the models
are not trained with the 3DPW training set. However, the
PA-MPJPE and MPJPE of STAF increase only by 1.5% and
0.7%. On one hand, this can be explained by the small
percentage of 3DPW in our training set, which accounts
for only 0.5%. On the other hand, it also demonstrates the
stronger generalization ability of STAF, which can still achieve
good evaluation results even without in-domain training
data.

In order to further demonstrate the complexity and effi-
ciency of STAF, we report the number of parameters and
the model size of STAF compared to some other models
in Table II. However, due to our input consisting of only
9 frames, direct comparisons of FLOPs with models that
utilize 16-frame inputs may not be entirely fair. Therefore,
we disregard FLOPs in our comparison. From the perspective
of parameters and model size, our model is significantly
smaller than models that employ RNN or CNN to learn
temporal information. Therefore, STAF exhibits higher model
efficiency.

Since H36M [32] no longer publicly provides ground-truth
SMPL parameters from Mosh, it is not fair to compare
STAF directly with those models that use SMPL parameters
from H36M for training. Contrary to the common perception,
H36M is not an “easy” dataset, although its data are collected
indoors. As mentioned in EFT [48], many models that perform
exceptionally well on H36M but poorly on 3DPW are often
overfitting on the H36M training set. Therefore, we follow
TCMR [8] and MPS-Net [51] and reproduce some models
without using the ground-truth SMPL parameters of H36M.

TABLE IV
ABLATION RESULTS ON 3DPW

TABLE V
ABLATION RESULTS OF AVERAGE POOLING MODULE ON 3DPW

The evaluation results are summarized in Table III, where
some of the results are from [8] and [51]. It can be seen
that STAF still achieves competitive results with equivalent
training sets. STAF reduces PA-MPJPE by 2.9 mm compared
to MPS-Net, which indicates STAF produces more precise
human meshes.

E. Ablation Study

In this section, we demonstrate the contribution of our work.
First, we validate the effectiveness of each module added to
the base model. Then, we verify the applicability of APM to
other models. Finally, we show how we determine the optimal
way to combine TCFM and SAFM.

1) Ablation Experiments: We conduct a series of experi-
ments on 3DPW to show the contribution of each module of
STAF. The results are summarized in Tabel IV. In the table,
APM denotes the average pooling module, STAF represents
the combination of TCFM and SAFM, and base indicates the
base model. For a fair comparison, the base model is also
trained with the same second training stage as the subsequent
ablation experiments. The evaluation results of the base model
indicate that the acceleration error is still high, although the
precision of human mesh recovery reaches a high level. This is
a pain point that is difficult to be solved by many image-based
models. Even many video-based models cannot improve the
smoothness much. With the addition of the average pooling
module, the acceleration error is easily reduced by 70.5%,
but the precision is not affected too much and even increased.
STAF also brings an all-round improvement, with PA-MPJPE,
MPJPE, PVE, and Accel reduced by 1.3 mm, 1.2 mm, 4.2 mm
and 2.8 mm/s2, respectively. From the last row, we can see that
the combination of APM and STAF achieves the best results.
Although the acceleration error increases by 0.1 mm/s2

compared to base+APM, the precision is improved.
A good balance between precision and smoothness is
achieved.

2) Effect of Average Pooling Module: Next, we demonstrate
the effect of our average pooling module, and the related
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results are in Table V. Our inspiration is drawn from the HAFI
module of MPS-Net [51]. The evaluation results of MPS-Net
w/o HAFI are from [51]. The evaluation results of MPS-Net
w/ HAFI are reproduced by ourselves and are similar to the
results of [51]. It can be found that MPS-Net achieves such a
low acceleration error relying mainly on the HAFI module.

However, we do not achieve the same effect when adding
HAFI to the classic model HMR [38]. Since the output of
HAFI is a weighted sum of the features, we output the
weights obtained from both the pre-trained MPS-Net and
HMR+HAFI. Note that HMR+HAFI represents taking a
sequence as input to HAFI and then sending the integrated fea-
tures to HMR. As shown in Fig. 8, compared to HMR+HAFI,
MPS-Net does not focus on the target frame effectively but on
the whole input sequence.

Obviously, HMR+HAFI is more reasonable since our goal
is to get the result for the target frame, which typically is the
middle frame of the input sequence. So, the middle weight
deserves to be the largest. However, our experiment results
demonstrate that it is the over-reliance on the feature of the
target frame that leads to high acceleration error. A similar
point has been mentioned in TCMR [8]. The evaluation results
of MPS-Net w/ APM and MPS-Net w/ HAFI in Table V
also prove our point. Next, we replace the HAFI module of
MPS-Net with our APM and find the acceleration error is
still reduced. Therefore, we can conclude that HAFI’s ability
to minimize the acceleration error sharply is not attributed
to its attention module design but benefits from the equal
treatment of each frame, i.e., attaching similar weights to
features of each frame. Another weak point of HAFI is
its poor generalization ability. In most cases, its attention
module is still automatically biased toward the target frame
during training. Our APM, instead, is easier to generalize
because it forces the model to handle each frame equally.
We also test it on the classical model HMR [38] to verify
its generalizability. The effect is noticeable, with a 73.5%
drop in acceleration error. Hence, we believe APM is a simple
and effective way to improve smoothness and can be easily
embedded in both image-based and seq2frame video-based
models.

3) Ablation Study of TCFM and SAFM: The final abla-
tion experiment is to find the best combination of TCFM
and SAFM. First, we introduce the meaning of the first
column in Table VI. TCFM refers to Temporal Coherence
Fusion Module and SAFM refers to Spatial Alignment Fusion
Module. And the n in TCFMn and SAFMn indicates that
the input features of this module are

{
φm

n,t
}9

t=1. Note that the
output feature sequence of TCFMn is the input of SAFMm,
when n = m. Because SAFM must come after TCFM, and
to avoid bloat, we do not consider module reuse. So there are
4+3+2+3 = 12 combinations in total. The average pooling
module is also applied during this experiment.

The evaluation results of all combinations are presented
in Table VI. The best combination is finally found, i.e.,
TCFM1+SAFM2. As for why this is the case, it is explainable.
First, in an iterative error feedback loop, the latter regressor
outputs a smaller △2, i.e., the lower-level features have less
impact on the final result. As shown in Fig. 7, the output

Fig. 8. The attention weights generated by the attention module of each
model. MPS-Net is [51]. HMR+HAFI refers to a seq2frame video-based
model composed of a classical single-frame model [38] plus HAFI. As for
TCFM1+SAFM1 and TCFM1+SAFM2, please refer to Sec. IV-E.3. As we
can see, neither MPS-Net nor TCFM1+SAFM1 can focus on the target frame
correctly. HMR+HAFI instead focuses too much on the target frame and
cannot take into account the temporal coherence. Our STAF, however, can
focus on the whole input sequence with a slight bias towards the target frame
so as to obtain a better balance between precision and smoothness.

TABLE VI
ABLATION RESULTS OF SPATIO-TEMPORAL FUSION MODULE ON 3DPW

of the first regressor is very close to the final result, and
the last two regressors just need to do a little fine-tuning
on the details. Therefore, the benefit of refining higher-level
features is supposed to be greater. The evaluation results
also prove this point. The evaluation metrics of TCFM1 to
TCFM3 and SAFM1 to SAFM3 in Table VI both show an
increasing trend. To answer why TCFM1+SAFM2 is better
than TCFM1+SAFM1, we output the weights generated by
SAFM in TCFM1+SAFM2 and TCFM1+SAFM1. As shown
in Fig. 8, the attention weights generated by TCFM1+SAFM2
are in line with our expectation that the attention model is only
slightly biased towards the middle frame. However, the atten-
tion weights generated by TCFM1+SAFM1 are obviously
unreasonable.

We believe that this is because SAFM1 adopts the refined
feature of TCFM1 as input. But TCFM1 destroys the spatial
structure of the original features, making SAFM1 difficult to
learn them correctly. More importantly, if TCFM1+SAFM1
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Fig. 9. Visualization of an extreme example, where the human pose in the
video suddenly changes dramatically. Compared to VIBE [11], STAF can
estimate a smoother human motion process.

is used, SAFM cannot well use the human spatial information
as well as mesh-alignment cues of each frame to enhance the
feature representation of the target frame. TCFM1+SAFM1
is similar to traditional video-based models because they all
just apply a temporal encoding of the features. Although
TCFM1+SAFM2 is not the lowest in acceleration error, it is
optimal in all other evaluation metrics. So, it is finally chosen
under comprehensive consideration.

V. DISCUSSION

In this section, we would like to discuss the issue of
over-smooth in STAF. As can be seen in Fig. 9, we design
an extreme example in which we forcefully merge two indi-
viduals with different poses into a single video as input.
While models like VIBE [11], which prioritize accuracy,
generate poses without any transition, STAF generates smooth
transitions from one pose to another. On one hand, this
demonstrates that our model does indeed exhibit over-smooth
in such extreme cases. On the other hand, this example
also showcases the capability of STAF to estimate smooth
results.

To address this issue, we adopt a shorter input sequence
in our model. This is done to prevent an excessive sequence
length, which could impact the precision of recovery from the
target frame. It is also essential to be aware that if sequences
are too brief, it may be challenging to acquire enough temporal
information.

Taking these factors holistically into account, we choose
to use a 9-frame input sequence, striking a balance between
smoothness and precision. For more qualitative results, please
refer to our project page. We also encourage you to run our
program to generate video demos.

VI. CONCLUSION

In this paper, we presented a novel seq2frame video-based
model for 3D human mesh recovery. We proposed spatio-
temporal alignment fusion to preserve spatial information
and further exploit both temporal and spatial information.
We introduced the temporal coherence fusion module that
takes full advantage of the motion coherence without destroy-
ing the original feature space. In addition to the temporal

encoder, we proposed the spatial alignment fusion module.
We cleverly used spatial information and alignment cues
to further correct the recovery result of the target frame.
Except for the above, we revealed the cause of the temporal
discontinuity that previous works suffer from, i.e., over-
reliance on the target frame. We thus proposed the averaging
pooling module, which reduces the model’s reliance on the
target frame and enhances the overall attention of the input
sequence. It improved the smoothness substantially without
affecting the recovery precision and can be easily embedded
in other image-based and seq2frame video-based models.
Compared with the previous 3D human mesh recovery mod-
els, STAF achieved a better trade-off between precision and
smoothness.
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