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LiSiam: Localization Invariance Siamese Network
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Abstract— Advances in facial manipulation technology have
led to increasing indistinguishable and realistic face swap videos,
which raises growing concerns about the security risk of deep-
fakes in the community. Although current deepfake detectors
can gain promising performance when handling high-quality
faces under within-database settings, most detectors suffer from
performance degradation in cross-database evaluation. More-
over, when test faces’ quality is different from training faces,
the performance degrades even under within-database settings.
To this end, we propose a novel Localization invariance Siamese
Network (LiSiam) to enforce localization invariance against
different image degradation for deepfake detection. Specifically,
our Siamese network-based feature extractor takes the original
image and the corresponding quality-degraded image as pairwise
inputs and outputs two segmentation maps. A localization invari-
ance loss is further proposed to impose localization consistency
between the two segmentation maps. In addition, we design a
Mask-guided Transformer to capture the co-occurrence between
the forgery region and its surroundings. Finally, a multi-task
learning strategy is utilized to obtain a robust and discrimina-
tive feature representation and jointly optimize multiple objec-
tive functions (i.e., segmentation, classification, and localization
invariance losses) in an end-to-end manner. Experimental results
on two public datasets, i.e., FaceForensics++ and Celeb-DF,
demonstrate the superior performance of our proposed method
to state-of-the-art methods.

Index Terms— Beepfake detection, localization invariance,
Siamese network, attention mechanism, multi-task learning.

I. INTRODUCTION

IN RECENT years, with the rapid development of deep
learning-based generative models, manipulated media con-

tent has swept the world, especially face swap videos and
images. Although face swap videos are mainly used for enter-
tainment purposes, the increasingly realistic and indistinguish-
able fake videos bring huge potential security risks including
financial fraud, trust crisis, etc. Therefore, the detection of

Manuscript received 9 December 2021; revised 30 March 2022 and
8 June 2022; accepted 8 June 2022. Date of publication 27 June 2022; date
of current version 5 July 2022. This work was supported in part by the
National Key Research and Development Program of China under Grant
2018AAA0102002, in part by the National Natural Science Foundation of
China under Grant 61732007 and Grant 62076131, and in part by the Open
Funding Project of the State Key Laboratory of Communication Content
Cognition under Grant 20K03. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Domingo Mery.
(Corresponding authors: Jinhui Tang; Yunlian Sun.)

Jian Wang and Jinhui Tang are with the School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing
210094, China, and also with the State Key Laboratory of Communication
Content Cognition, People’s Daily Online, Beijing 100733, China (e-mail:
wj92@njust.edu.cn; jinhuitang@njust.edu.cn).

Yunlian Sun is with the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210094, China
(e-mail: yunlian.sun@njust.edu.cn).

Digital Object Identifier 10.1109/TIFS.2022.3186803

fake videos has attracted growing concern in the community.
In present period, many deepfake detectors [1], [2] have
achieved satisfactory performance in uncompressed within-
database experiments [3]. However, most methods suffer from
a sharp performance drop when conducting cross-quality eval-
uation in within-database experiments. Moreover, the perfor-
mance of existing methods drops drastically in cross-database
evaluation as it is difficult to cope with unseen forgery
methods. Therefore, it is crucial to develop powerful and
effective anti-deepfake tools to detect facial forgery against
image quality degradation and unseen forgery methods.

To mitigate performance degradation due to image
degradation (e.g., compression, blurring, etc.) and unseen
forgery methods, one common solution is to utilize various
data augmentation strategies for increasing the diversity of
training data [4]. However, data augmentation strategies
might weaken or even erase some forgery traces, which
makes it difficult for the detector to accurately locate forgery
traces. Recently, some research attempts to investigate
frequency-domain clues to capture intrinsic traces for forgery
detection [2], [5], [6]. For example, Qian et al. [2] utilized
frequency-aware decomposition and local frequency statistics
to capture forgery traces in the frequency domain. Li et
al. [5] designed a single-center loss to guide frequency-aware
discriminative feature learning for extracting intrinsic feature
representations. However, forgery traces in the frequency
domain can be easily weakened by designing a special
frequency-domain regularization term for the generator
loss [7]. In order to catch slight forgery traces, some
researchers focus on the detailed information of local regions.
For instance, Chai et al. [8] attempted to use a patch-based
detector to focus on local artifacts rather than global semantics
for improving generalization. These patch-based methods
focus on local details, however, do not further explore the
fine-grained detection of pixel-level forgery traces.

To overcome these issues, we need to enhance the model
to capture more robust and effective forgery clues, especially
pixel-level localization of facial forgery. One possible solution
is to construct a blending boundary between manipulated
regions and original regions, which utilizes the inconsistency
of the two regions in manipulated images. For example, Qian
et al. [9] proposed Face X-ray to reveal the blending boundary
between the altered face and background image for locating
manipulated traces. However, because the blending boundary
is easy to be removed by image compression or image blur,
the Face X-ray method suffers from performance degradation
when dealing with low-quality data. In addition, the pixel-level
segmentation mask is also utilized for the localization of facial
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forgery [1], [10], [11]. For example, Dang et al. [10] pro-
posed a novel attention mechanism to highlight manipulated
regions with segmentation mask supervision. Shang et al. [11]
proposed a Pixel-Region Relation Network to separate manip-
ulated regions from authentic regions and then measure the
inconsistency between the two regions for deepfake detection.
However, slight forgery traces can be also easily removed
by quality-degradation methods, which results in inaccurate
localization on compressed data. In addition, Zhang et al. [12]
considered that CNNs are inclined to focus on the most
discriminative part of the object for recognition. Nevertheless,
some studies [13]–[15] have shown that focusing on the entire
object region rather than just the most discriminative part of
the object can improve the generalization performance of the
model. It should be noted that current deepfake detectors usu-
ally ignore the above findings. Considering that no matter how
the image is compressed or blurred, the tampered regions of
the fake image remain unchanged. Accordingly, it is significant
to focus on robust localization of manipulated regions against
JPEG compression or image blur.

In this paper, we attempt to enforce localization consistency
across images with different image quality degradation and
exploit pixel-level localization for improving generaliza-
tion performance. The consistency of forgery localization is
expected to be robust to different image quality degradation
for deepfake detection. To this end, we propose Localization
Invariance Siamese Networks (LiSiam) for imposing localiza-
tion invariance constraints between segmentation maps corre-
sponding to input images of different qualities. Specifically,
we firstly utilize data augmentation (e.g., JPEG Compres-
sion, Gaussian Blurring, Resizing, etc.) to obtain degraded
images. Siamese networks then take both the raw image
and quality-degraded image as inputs and output two seg-
mentation maps. A novel localization invariance loss func-
tion is proposed to enforce localization invariance across
images with different degrees of degradation. Moreover,
a mask-guided transformer (MT) is designed to capture
co-occurrence between the suspected manipulated region and
its surroundings. Next, a multi-layer perceptron (MLP) head
is employed to take co-occurrence features as inputs and
output the final binary decision. Finally, we use a multi-task
learning strategy to optimize the network in an end-to-end
manner.

In summary, the main contributions of this work are five-
fold:

• A novel framework, LiSiam, is proposed to implement
pixel-level localization of facial forgery and enforce
localization invariance for improving performance in both
cross-database and cross-quality evaluation.

• We propose a mask-guided transformer to finely capture
the co-occurrence between manipulated regions and their
surroundings. The co-occurrence is expected to contain
rich and distinctive information of facial forgery and can
better guide the model to capture forgery traces.

• To improve forgery localization of low-quality images,
we design a localization invariance loss to enforce the
localization consistency between the raw image and
quality-degraded image.

• A multi-task learning strategy is adopted to optimize the
network in an end-to-end manner.

• We conduct extensive experiments on two public datasets
to evaluate the performance of the proposed method.
Experimental results show the superior performance of
our proposed method to the state-of-the-art methods.

The rest of the paper is organized as follows: Sec. II reviews
related work of Deepfake Detection, Siamese Network, and
Manipulation Localization. The proposed LiSiam architecture
is detailed in Sec. III. Experimental setup, results, and analysis
are described in Sec. IV. Finally, the paper is concluded in
Sec. V.

II. RELATED WORK

In this section, we give a brief review to Deepfake Detec-
tion, Siamese Network, and Manipulation Localization.

A. Deepfake Detection

Previously, some researchers focused on investigating cam-
era characteristics and hand-crafted features to capture forged
traces for tampered face detection [16]–[18]. For instance,
Zhou et al. [16] captured low-level fingerprint-like camera
characteristics to detect tampered faces. In [17], inconsis-
tency of head poses is estimated via facial landmarks to
detect deepfakes. Although these methods achieved sound
performance at that time, they could not meet the current
requirements of deepfake detection, especially in the face of
increasingly advanced deepfake technologies. Recently, there
are some approaches attempting to explore information like
frequency-aware clues [2], [5], [7] and pixel-level segmen-
tation map [9]–[11] for deepfake detection. Durall et al. [7]
conducted experiments to prove that common up-convolution
operations could result in high-frequency distortions in
CNN-generated images. The frequency-based detectors [2],
[5] captured artifacts in the frequency domain and not just
in the RGB domain. However, these detectors could be easily
bypassed by designing a special frequency-domain regulariza-
tion term for the generator loss. Zhao et al. [19] proposed a
multi-attentional network to capture fine-grained information
for deepfake detection. However, this method lacks powerful
supervision and only depends on the attention mechanism to
detect artifacts, which can not well capture slight forgery traces
for quality-degraded forgery detection.

Besides, there are also some methods focusing on exploiting
spatial or temporal clues from local facial regions [20], such
as eye blinking [18], lip movement [21], and so on. How-
ever, these early methods struggled to detect the increasingly
realistic deepfakes. To better focus on local details and the
global context of face forgery, some researchers [22], [23]
attempted to combine Vision Transformers with CNNs for
deepfake detection. These methods achieved promising gen-
eralization performance in cross-database evaluation, but the
combination of CNNs and Vision Transformers involves a
large number of parameters resulting in high computational
complexity. Besides most of them also ignored the robustness
of the detector against quality-degraded forgery. At present,
some researchers began to pay attention to this valuable
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and meaningful issue [11]. However, no specific approach
has been proposed to systematically address the problem
of quality-degraded face forgery detection. In this work,
we design a localization invariance loss function to allow
the model to learn effective feature representation against the
quality-degraded images.

B. Siamese Network

Siamese network is a neural network architecture consisting
of twin subnetworks with shared weights. Siamese network
was widely used in the computer vision field, including image
recognition [24], object tracking [25], semantic segmenta-
tion [26], unsupervised visual representation learning [27],
and others. Wang et al. [26] proposed a self-supervised
equivariant attention mechanism (SEAM) which is imple-
mented by a Siamese network with equivariant cross regular-
ization loss. SEAM was designed to enforce Class Activation
Mapping (CAM) predicted from input images with various
scales to be consistent. Chen et al. [27] proposed a simple
Siamese network with simple designs to model invariance
for learning meaningful representations. Mayer et al. [28]
proposed Siamese Networks-based forensic similarity network
to determine whether two image patches contain the same or
different manipulated characteristics. Besides, Han et al. [1]
proposed a state-of-the-art Co-teaching approach similar to
Siamese Networks for robust training of deep networks with
noisy labels. The Co-teaching approach can simultaneously
train two networks with non-weight sharing scheme and enable
them to teach each other in each mini-batch. Inspired by
the above attempts, we propose a unified architecture based
on Siamese Networks that model localization invariance for
cross-quality deepfake detection.

C. Manipulation Localization

Previously, there are some approaches trying to perform
the localization of tampered regions for image forgery detec-
tion [29]–[31]. Zhou et al. [30] proposed a two-stream Faster
R-CNN network to localize tampered regions by discovering
noise inconsistency between tempered and authentic regions.
Bappy et al. [31] utilized both frequency and spatial domain
features to localize tampered regions. These approaches were
used to detect image forgeries (e.g., copy-move forgery),
not face forgeries. For the deepfake detection task, some
researchers focused on pixel-level fake face segmentation to
capture manipulation traces. For example, Dang et al. [10]
employed an attention mechanism to automatically detect
forged traces in face images. Although their method obtained
the promising performance, the generation of groundtruth (GT)
manipulation masks needs to be improved for better guiding
the localization of facial forgery. In this work, we utilize a
novel GT segmentation mask to better guide the model to focus
on the forged region. Besides, Shang et al. [11] proposed to
segment tampered regions using a spatial attention mechanism
and then use multiple metrics to measure the inconsistency
between authentic regions and tampered regions. Li et al. [9]
proposed a Face X-ray method to locate the boundary trace
between tampered regions and authentic regions. However, this

Fig. 1. Overview of the proposed method. The proposed LiSiam network
takes the original image and quality-degraded image as the inputs of the
feature extractor ( fcnn) based on Siamese networks. Both output feature
maps of fcnn are fed to the weight-sharing segmentation decoder ( fseg).
The output segmentation maps from fseg are utilized to enforce localization
consistency by localization invariance loss (LLi). The proposed mask-guided
transformer takes feature maps X1

c and segmentation maps X1
s as inputs

and outputs discriminative co-occurrence features. Finally, the co-occurrence
features are used as inputs to the classifier based on MLP to perform the
binary classification.

method suffered performance degradation due to the change
of image quality, because image compression or image blur
can erase some boundary traces.Yun et al. [13] claimed that
the generalization performance of the model can be improved
by focusing on the entire object region rather than just the
most discriminative part of the object. To this end, we design
a localization invariance loss to enforce forgery localization
invariance across different image degradation for fine-grained
localization.

III. THE PROPOSED METHOD

In this section, we first introduce Localization invari-
ance Siamese (LiSiam) architecture in Sec. III-A and then
present Mask-guided Transformer, designed loss function and
multi-task learning strategy in Sec. III-B, Sec. III-C, and
Sec. III-D, respectively. Finally, we describe our implemen-
tation details in Sec. III-E.

A. LiSiam Architecture

To detect facial forgery, we propose a novel framework to
enforce localization invariance across images of different com-
pression and blur degrees, as shown in Fig. 1. The proposed
LiSiam networks mainly consist of two sub-network branches
which are designed to process the original input image and
the quality-degraded input image, respectively. Each branch
has a Feature Extractor ( fcnn) and a Segmentation Decoder
( fseg). A CNN-based Feature Extractor is used to extract a
feature representation Xn

I ∈ R
C×H0×W0 (n = 1, 2 indicates nth

branch) from the input image In . The Segmentation Decoder
is used to obtain pixel-level localization of the forged region.
The Siamese Segmentation Decoder outputs two segmentation
maps which are used to calculate the localization invariance
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Fig. 2. The structure of Mask-guided Transformer. “⊗” and “⊕” denote matrix multiplication and element-wise sum, respectively.

loss. With the supervision of this loss, we can train our
networks to extract more robust features against image quality
degradation. Apart from fcnn and fseg, the first branch includes
also a Separable Convolution Unit ( fscu), Mask-guided Trans-
former ( fmt), and Multilayer Perceptron (MLP) Head ( fmlp).
The Separable Convolution Unit consists of separable convo-
lutions [32], batch normalization, ReLU, and dropout layers,
which is used to further encode feature representation for
the classification task. The Mask-guided Transformer takes
feature maps and segmentation maps as inputs and extracts co-
occurrence features. The prediction operation is implemented
by the MLP head with two linear layers. During inference,
since our proposed LiSiam is a weight-sharing siamese net-
work, only the first branch is utilized to make the final binary
decision α for a test image, which can be formulated as:

α = fmlp( fmt( fseg( fcnn(I)), fscu( fcnn(I))). (1)

B. Mask-Guided Transformer

The attention mechanism has achieved great success in
both natural language processing [33], [34] and computer
vision [35], [36]. Therefore, we design a novel Mask-guided
Transformer to extract robust co-occurrence features for deep-
fake detection, as shown in Fig. 2. The Mask-guided Trans-
former is an “attention on attention” operation. One attention
is used to generate pixel-level predictions of the suspected
forged region. We then add another attention operation to
extract robust attended features by computing the similarity
between fake features and real features. Specifically, we first
extract feature representations for the suspected fake regions
and real regions by an attention operation, respectively:

Xn
I = fcnn(In), (2)

Xn
s = fseg(Xn

I ), (3)

X1
c = fscu(X1

I ), (4)

X f , X r = fatt(X1
s , X1

c), (5)

where Xn
s ∈ R

2×H0×W0 denotes segmentation maps obtained
by the Segmentation Decoder. X1

c ∈ R
C×H1×W1 represents

feature maps extracted by the Separable Convolution Unit. fatt
is a soft attention operation which aims to separate features
of forged regions from those of real regions in X1

c using

segmentation maps. fatt operation is defined as follows:
X1

s� = fbi(softmax(X1
s )), (6)

X r = X1
c � X1

s� [0, :, :], (7)

X f = X1
c � X1

s� [1, :, :], (8)

where � indicates element-wise multiplication. fbi is a bilinear
interpolation operation, which is used to obtain attention maps
X1

s� of the same spatial size as X1
c . X r ∈ R

C×H1×W1 and X f ∈
R

C×H1×W1 are real and suspected fake features, respectively.
Next, we use one 1 × 1 convolution to map the suspected

fake feature into Q (Query), and use two 1 × 1 convolutions
to map the real feature into K &V (Key and Value).

qi = fq(x f,i ), (9)

k j = fk(xr, j ), (10)

v j = fv(xr, j ), (11)

where qi ∈ Q, k j ∈ K and v j ∈ V are the i th Query, j th Key
and Value pairs, respectively. xf,i is the i th feature position
of the fake feature X f . xr, j is the j th feature position of the
real feature X r. fq(·), fk(·), and fv(·) are the corresponding
1 × 1 convolutions.

Then, we obtain the transformed feature yi (i.e., the i th

feature position of Y ) based on v j and the attention weight
ai, j computed by the dot product similarity as follows:

ai, j = softmax(qT
i k j ), (12)

yi = fm(ai, j v j ), (13)

where fm(·) is implemented by 1 × 1 convolutions.
After that, we concatenate original classification features

X1
c and the transformed features Y (added with X f ). Finally,

features are re-weighted along the channel dimension using
a Squeeze-and-Excitation (SE) [37] block ( fse). The process
described above is defined as follows:

Z = fse(concat(Y + X f , X1
c)). (14)

C. Localization Invariance Loss

In the deepfake detection task, obtaining a discriminative
and robust feature representation is crucial for performance
improvement. Current deep learning-based methods usually
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utilize cross-entropy loss or center loss [5] to optimize net-
works. Although these methods based on the above loss
achieve promising performance when dealing with faces of
seen quality, they suffer performance degradation on unseen
quality (i.e., cross-quality) evaluation. To this end, we pro-
pose a localization invariance loss to allow the model to
learn robust feature representations for cross-quality deep-
fakes. Localization invariance loss aims to enforce forgery
localization invariance across different image degradation and
improve performance for cross-quality deepfake detection. The
localization invariance loss is defined as:

Lli = �X1
s − X2

s �1. (15)

D. Multi-Task Learning Strategy

The multi-task learning strategy aims to perform joint
learning of multiple tasks by sharing information among
multiple related tasks [38]. In our proposed LiSiam, three
learning tasks are involved: (1) forgery localization, (2) binary
classification, and (3) localization invariance constraint. To this
end, we design three loss functions to optimize the network
including segmentation loss, classification loss, and localiza-
tion invariance loss. Deepfake detection is essentially a binary
classification task. Same as most previous work, we utilize the
general cross-entropy loss to optimize the parameters of the
networks. Furthermore, we also use the general cross-entropy
loss as our segmentation loss for the segmentation task. The
two loss functions are defined as follows:

Lcls = Lce(α,αgt), (16)

Lseg = Lce(X1
s , Xgt), (17)

where αgt is the ground-truth classification label and Xgt refers
to pixel-level ground-truth. The predicted score α is obtained
as:

α = fmlp( faap(Z)) (18)

where faap is the Adaptive Average Pooling operation which
aims to aggregate the feature maps.

To achieve joint learning of multiple tasks, we sum up losses
from the above three tasks. The total loss of LiSiam is defined
as:

L = λliLli + λclsLcls + λsegLseg, (19)

where λli, λcls, and λseg are the weights representing the
importance of each loss.

E. Implementation Details

Specifically, our feature extractor consists of the backbone
network and the OCR [39] block. We take Xception as our
backbone network, which is widely used in the deepfake detec-
tion task. To reduce both the computational complexity and the
number of parameters in the network, we utilize only the first
12 blocks of Xception as our backbone network for feature
extraction. Besides, to obtain finer segmentation maps for fine-
grained detection, we remove the last MaxPool2d layer of
Xception. Therefore, the modified backbone network produces
output feature maps of size 1024 × 37 × 37. The OCR block
then takes the output feature maps of the backbone network

Fig. 3. Examples of different segmentation masks. Face images are from
FF++ [3] with four forgery methods, i.e., DeepFakes(DF), FaceSwap (FS),
Face2Face (F2F), and NeuralTextures (NT). The DIFF mask is the difference
between the real and fake images. The SSIM map is generated by computing
the structural similarity between the real and fake images. The SSIM mask
is the binary image of the SSIM map.

as input and outputs feature maps of size 512 × 37 × 37. The
output dimension 2 × H0 × W0 of the Segmentation Decoder
is 2 × 37 × 37 . The dimension C × H1 × W1 of the feature
map X1

c is 512 × 13 × 13 . Segmentation loss, classification
loss, and localization invariance loss are equally important to
our task. Thus, to balance the three losses, λli, λcls, and λseg
are empirically set to 1.0 in the loss function.

The Structural Similarity Index Measure (SSIM) [40] has
been widely used to measure the structural difference between
two images. The pixel-by-pixel structural difference between
the real face and the corresponding fake face can locate the
forged region of the fake image. Therefore, in this work,
we utilize the SSIM map as the groundtruth segmentation
map, which better guides the model to focus on the forged
region. Specifically, the original SSIM map multiplied by
255 is converted into a binary mask by empirically applying
a threshold of 20. The obtained binary mask is used as
the final groundtruth of the fake image. Besides, we use an
all-zero map as the segmentation mask for the real image.
As shown in Fig. 3, we compare our generated SSIM mask
with difference-based (DIFF) mask [10]. It is indicated that our
SSIM mask provides richer and more comprehensive details
than the difference-based mask.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
method on the FaceForensics++ (FF++) database [3] and the
Celeb-DF database [41], [42].
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A. Datasets and Settings

1) FaceForensics++: FaceForensics++ (FF++) is a
large-scale public database, which is widely adopted in the
deepfake detection task. The database consists of 1000 real
videos from YouTube and 4000 fake videos manipulated
by four methods: DeepFakes(DF) [43], FaceSwap (FS) [44],
Face2Face (F2F) [45] and NeuralTextures (NT) [46]. Besides,
each video in FF++ has three versions in terms of compres-
sion level: original version (RAW or C0), high-quality versions
(HQ or C23), and low-quality version (LQ or C40).

2) Celeb-DF: Celeb-DF is a challenging database, which
is widely used for evaluating the generalization performance
of deepfake detectors. The Celeb-DF database has two ver-
sions: Celeb-DF-v1 [41] and Celeb-DF-v2 [42]. The Celeb-
DF-v1 includes 408 real videos and 795 fake videos. The
Celeb-DF-v2 consists of 890 real videos and 5,639 fake
videos.

3) Data Preparation: To extract face data from the whole
image, we use CenterFace [47] for detecting the face region.
The face image is resized to 299 × 299 pixels as the input of
the networks. On FF++, we sample only 30 frames per video
for training. Compared with other methods [3], our methods
need less training data. Following [3], we extract 100 frames
and 100 frames per video for validation and test, respectively.

Besides, we utilize various degradation methods to obtain
quality-degraded images, including JPEG Compression, Resiz-
ing, and Gaussian Blur. These methods are performed with
a probability of 50% in random order. The quality-degraded
images using different degradation methods are shown in
Fig. 4.

4) Evaluation Metrics: To effectively evaluate the perfor-
mance of our proposed method, we adopt two commonly
used metrics in the deepfake detection task, including Accu-
racy (Acc) and Area Under the ROC Curve (AUC). We report
our experimental results at the frame level by default and
specify the fashion otherwise.

B. Training Details

We implement our proposed method on the PyTorch plat-
form and use Stochastic Gradient Descent (SGD) to update
the parameters of the networks. The initial learning rate
and mini-batch size are set to 0.002 and 32, respectively.
A poly learning rate policy with a power of 0.9 is employed
to update the learning rate. To speed up the training of
our network, we use ImageNet weights for the initializa-
tion of network weights. After weight initialization, we first
freeze classification-related layers (i.e., Separable Convolution
Unit, Mask-guided Transformer, and MLP Head) and only
train segmentation modules (consisting of Feature Extrac-
tor and Segmentation Decoder) for about 146k iterations.
Then, we freeze segmentation-related layers and only train
classification-related layers for about 16k iterations. Finally,
we train all layers of the whole network for 324k iterations.

C. Within-Database Evaluation

In this section, we compare our methods with prior state-
of-the-art methods in within-database evaluation. And these

Fig. 4. Examples of images with different quality-degradation methods.
We introduce the comparison of different quality degradation between real
and DeepFakes (DF) images. “R”, “C”, and “G” indicate Resizing, JPEG
Compression, and Gaussian Blur, respectively. “&” means two or more quality
degradation methods are applied at the same time.

TABLE I

FRAME-LEVEL PERFORMANCE COMPARISON AMONG 12 DIFFERENT
METHODS ON FF++. ∗ INDICATES THE MODEL IS TRAINED BY US

USING THE OFFICIAL CODE

methods are trained and tested using the same-quality images
(e.g., trained on FF++ C23 and tested on FF++ C23).
We report both frame-level and video-level results for fair
comparisons on the FF++ database. Table I summarizes the
frame-level results of 12 different state-of-the-art detectors in
terms of accuracy and AUC. As can be seen, our method
surpasses the state of the art in C23 (high quality) evaluation.
Although our proposed method is trained with fewer training
samples than the common setting [3], our methods still obtain
the best results. For the more challenging C40 (low quality)
scenario, our proposed method enhances the robustness against
compressed data owing to localization invariance and greatly
improves the detection performance. Specifically, the proposed
LiSiam improves AUC from 87.26% to 91.44% in FF++
(C40) evaluation compared with the current state-of-the-art
method [19].
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TABLE II

VIDEO-LEVEL PERFORMANCE COMPARISON AMONG 5 DIFFERENT
METHODS ON FF++. ∗ INDICATES THE MODEL IS TRAINED BY US

USING THE OFFICIAL CODE

TABLE III

PERFORMANCE COMPARISON AMONG 12 DIFFERENT METHODS IN

CROSS-DATABASE EVALUATION. “PD” MEANS PRIVATE DATA

Some frame-level methods report video-level results by
averaging the accuracy and AUC of each frame in a video.
Therefore, we use the same video-level evaluation metrics
for fair comparisons. Table II lists video-level results of our
method and other four state-of-the-art approaches. Similarly,
our proposed LiSiam improves AUC by 1.35% compared with
the current advanced method (i.e., F3-Net with 93.30% v.s.
LiSiam with 94.65%).

Our proposed method achieves promising performance on
FF++, which can illustrate the effectiveness of our proposed
LiSiam architecture. Although the image degradation process
can eliminate some of the forgery traces and make forged faces
more difficult to detect, our method can still capture slight
forgery traces due to superior robustness against the image
degradation process.

D. Cross-Database Evaluation

In this section, we conduct extensive experiments to exam-
ine the generalization capability of the proposed method.
For the deepfake detection task, examining the generalization
capability of different methods is usually carried out by cross-
database evaluation. Therefore, we train our LiSiam on FF++
and test it on Celeb-DF-v1 [41] and Celeb-DF-v2 [42] to
verify its generalization capability. The results are reported
in Table III. It is indicated that the generalization perfor-
mance of our proposed method is superior to state-of-the-
art methods and improves about 1.74% AUC (i.e., LiSiam
with 81.14% v.s. GFFD with 79.4%) towards a fair com-
parison on Celeb-DF-v1. Although the face X-ray method
utilizes extra data to achieve high performance, our method
still slightly outperforms the method. On Celeb-DF-v2, our

Fig. 5. t-SNE visualization of features derived from different models on the
test set of FF++: (a) Xception, (b) LiSiam. C†-C‡ indicates that the model is
trained on FF++ (C†) and tested on FF++ (C‡). The red, blue, green, purple,
and orange color represent features from the original, DeepFakes, FaceSwap,
Face2Face, and NeuralTextures images, respectively.

TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART MODELS IN

CROSS-QUALITY EVALUATION. ∗ INDICATES THE MODEL IS TRAINED
BY US USING THE OFFICIAL CODE

proposed method achieves 1.33% AUC improvement over the
current advanced methods (i.e., SPSL). The promising results
on both databases demonstrate that the proposed method
has higher detection performance and better generalization
capability compared to the current state-of-the-art methods in
cross-database evaluation.

E. Cross-Quality Evaluation

To show the generalization performance of the proposed
method for deepfake detection, we perform cross-quality
experiments on the FF++ database with three image qual-
ities. To verify the robustness of the proposed method
on cross-quality deepfake detection, we train LiSiam using
images of one quality and test it using images of the other
two qualities. For example, we train our LiSiam with the
raw images and then test it with high-quality and low-
quality images. Table IV provides the video-level AUC com-
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TABLE V

PERFORMANCE COMPARISON WITH THE BASELINE MODEL USING OUR
IMAGE QUALITY DEGRADATION (IQD) IN CROSS-QUALITY EVALU-

ATION. ∗ INDICATES THE MODEL IS TRAINED BY US USING THE

OFFICIAL CODE

parisons with state-of-the-art methods including Xception,
Zhao et al. [19], and CEViT [22], showing that our proposed
method obtains promising performance. Note that Xception
achieves promising results in same-quality evaluation, but suf-
fers from performance drop in cross-quality evaluation, espe-
cially in quality-degraded evaluation (e.g., trained on FF++
C0 and tested on FF++ C40). Compared with state-of-the-
art methods, our proposed LiSiam achieves more promising
results in cross-quality evaluation. It should be noted that on
the FF++ database, compressed videos are obtained by the
H.264 codec which is a widely used video-level compression
technique. In our work, we use only three common frame-level
quality-degraded operations to roughly simulate the effect of
the video-level compression. The two control methods instead
utilize various data augmentation to enhance the detection
performance. For example, CEViT [22] utilized ImageCom-
pression, GaussNoise, HorizontalFlip, IsotropicResize, Pad-
IfNeeded, RandomBrightnessContrast, FancyPCA, HueSatura-
tionValue, ToGray, and ShiftScaleRotate as data augmentation
strategies.

To further demonstrate the performance improvement of
our model is brought by Siamese structure with an extra
quality-degraded branch, we compare our method with the
baseline Xception in cross-quality evaluation, by making it use
our simple image quality degradation (IQD) operations. The
results are reported in Table V. From the obtained results,
we observed that our method outperforms Xception when
using the same data augmentation operations. This illustrates
that the performance improvement in cross-quality evaluation
benefits from the proposed architecture.

Discriminative feature learning is usually expected to
enhance the robustness and improve the detection performance
of the model. To further show the discriminative power of
the feature representations learned by our method, we utilize
t-distributed stochastic neighbor embedding (t-SNE) [58] to
visualize the feature derived from the baseline model (Xcep-
tion) and our LiSiam on the test set of FF++, as shown in
Fig. 5. To better separate embedded features, both models
perform five-class classification tasks (i.e., one real class
and four forgery classes). From the visualization, we can
clearly see that the two methods are both promising in FF++
(C0-C0), but features of our LiSiam are more separable than
the baseline model in FF++ (C0-C23). LiSiam benefits from
localization invariance that enhances the model to learn more
discriminative features for deepfake detection. The above

observation demonstrates that the proposed method is robust
against quality-degraded forgery.

F. Ablation Study

To evaluate the effectiveness of each component in LiSiam,
we study seven variants of our network:

1) Model-A. Our proposed LiSiam.
2) Model-B. Based on LiSiam, we further add classification

loss and segmentation loss to the second branch.
3) Model-C. LiSiam without pixel-level segmentation map

supervision.
4) Model-D. Based on LiSiam, we remove classification

loss and segmentation loss from the first branch and instead
add classification loss and segmentation loss to the second
branch.

5) Model-E. A single branch of LiSiam. We remove the first
branch and localization invariance loss and add classification
loss, segmentation loss, and Mask-guided Transformer to the
second branch. Model-E is a version of LiSiam without
localization invariance loss.

6) Model-F. LiSiam without the Mask-guided Transformer.
7) Model-G. Model-G is a single branch of LiSiam, where

we remove the second branch & localization invariance loss,
and retain classification loss & segmentation loss & Mask-
guided Transformer. For the input of Model-G, we include
both the original and quality-degraded images.

The evaluation results on the FF++ (C40) database are
shown in Table VI. To evaluate the effectiveness of the
multi-task learning strategy, we evaluate various multi-task
strategies to find the best practices for robust feature learning,
as shown in Table VI. Specifically, we first study the effec-
tiveness of each of the three loss functions (i.e., segmentation
loss Lseg , classification loss Lcls , and localization invariance
loss Lli ). We compare our proposed LiSiam with Model-
B, Model-C, Model-D, Model-E, Model-F, and Model-G.
We can see that the removal of classification loss L2

cls and
segmentation loss L2

seg from the second branch improves our
performance, indicating that the performance improvement
comes mainly from the localization invariance loss Lli and the
segmentation loss L1

seg from the first branch. It is worth noting
that Model-E is a version of LiSiam without localization
invariance loss, whose performance decreases significantly.
Although the second branch contains quality-degraded opera-
tions, Model-D suffers from performance degradation. In [4],
the authors conducted extensive experiments to show that data
augmentation improves the generalization of the model, but
may remove forgery clues, hence resulting in performance
degradation on some databases. The authors attempted to
alleviate this problem by decreasing the probability of data
augmentation. However, the empirical setting of the frequency
also increases the complexity of training. To further show
our proposed localization invariance loss is indeed better than
simple data augmentation, we compare LiSiam with Model-G.
From the results, we can clearly see that our proposed LiSiam
outperforms Model-G.

In this work, we present a novel solution to maintain
a good balance between cross-database generalization and
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TABLE VI

ABLATION STUDY RESULTS OF DIFFERENT MODULES ON THE FF++ (C40). Li
seg AND Li

cls INDICATE SEGMENTATION LOSS AND

CLASSIFICATION LOSS OF THE i th SUB-NETWORK BRANCH OF SIAMESE NETWORKS, RESPECTIVELY. ∗ INDICATES
THE MODEL IS TRAINED BY US USING THE OFFICIAL CODE

TABLE VII

PERFORMANCE COMPARISON BETWEEN SSIM AND DIFF MASKS ON TWO
COMPRESSED VERSIONS OF THE FF++ DATABASE

within-database performance. Our proposed method contains
two sub-network branches. The two sub-network branches
take the original image without data augmentation and
quality-degraded image with data augmentation as inputs,
respectively. The first branch adopts a classification loss and
localization invariance loss and thus improves the robustness
of the detector against image quality degradation. The two loss
functions are jointly used for the training of our model. Finally,
comparing Model-F with our proposed method, we observe
that the video-level accuracy of Model-F decreases by 1.86%
due to the lack of Mask-guided Transformer.

Besides, to evaluate the effectiveness of our ground-truth
segmentation map, we compare our SSIM mask with the
difference (DIFF) mask [10]. As shown in Fig. 3, our SSIM
mask contains richer details (e.g., cheek texture) compared
to the DIFF mask. Table. VII lists performance comparison
between SSIM and DIFF masks in terms of video-level AUC
and accuracy on two compressed versions of the FF++ data-
bases, i.e., FF++ (C23) and FF++ (C40). From Table. VII,
we can observe that our LiSiam based on the SSIM mask
outperforms that based on the DIFF mask, especially in terms
of the video-level accuracy on FF++ (C40). Experimental
results demonstrate that the SSIM mask contains richer details,
which allows the model to focus more on texture information.
In [59], authors also noticed the importance of global textures.

G. Visualization

To further illustrate the superiority of our method, we show
visualization results of LiSiam on the test set of FF++.
As shown in Fig. 6, we compare the segmentation results
of LiSiam with ground truth segmentation. We can see that
the segmentation map obtained from the proposed LiSiam can
effectively localize tampered regions. Moreover, segmentation
results can well show tampered regions caused by each forgery
method. For example, NeuralTextures (NT) is used to only

Fig. 6. Examples of the segmentation results obtained from LiSiam on
the test set of FF++: (1) Input image, (2) SSIM map, (3) SSIM mask, (4)
segmentation map obtained from LiSiam. Left to Right: target image, source
image, fake images manipulated by the DF, FS, F2F, and NT method.

manipulate facial expressions around the mouth region in
FF++. And, as expected, our method can well highlight
the forged region around the mouth. It is worth noting that
the fake image obtained by NT leaves some slight traces in
Fig. 6 (b). To better show these noises, we mark the noise
region with a black oval. Our LiSiam highlights this slight
noise, which proves the powerful generalization ability of our
model.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on January 07,2024 at 12:18:45 UTC from IEEE Xplore.  Restrictions apply. 



2434 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 7. Grad-CAM visualization of the feature maps learned by the networks in same-quality evaluation. We show two groups of Grad-CAM visualization
from four forgery methods. Top to down: (a) input deepfake image, (b) SSIM image, (c) gray map learned by Xception, (d) gray map learned by LiSiam,
(e) grad-CAM visualization for Xception, (f) grad-CAM visualization for LiSiam.

Besides, we compare the feature maps learned by LiSiam
with the baseline model (Xception) in the same-quality and
cross-quality evaluation, as shown in Fig. 7 and Fig. 8,
respectively. Gradient-weighted Class Activation Mapping
(Grad-CAM) [59], [60] is an advanced visualization method,
which can generate the hot map to enhance visual explanations
for the CNN-based networks. Therefore, we apply Grad-CAM
to visualize the internal feature representations learned by the
networks. For better comparison, we use the SSIM image
to show the difference between the real image and the fake
image as a reference. Moreover, we utilize the gray map to
visualize the intensity of the hot map. From Fig. 7, we can see
that the proposed method can locate the forgery region more
accurately and display richer details than Xception in same-
quality evaluation. To compare our proposed LiSiam with
Xception in cross-quality evaluation, both the methods are
trained with the raw (i.e., C0) images from the FF++ training
set. And then we visualize the feature maps learned by the two
methods on the three image-qualities (i.e., C0, C23, and C40)
faces from FF++ test set. The visualization results of Fig. 8
clearly show that our LiSiam is robust against quality-degraded
forgery owing to localization invariance. Although Xception
can roughly locate the forged region on the C0 test image,
it fails on some quality-degraded images (e.g., the C23 DF

image, the C40 F2F image, etc.). Compared with Xception, our
proposed LiSiam can maintain stable localization performance
in cross-quality evaluation.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel Localization Invariance Siamese
Network is proposed to enforce localization consistency across
images with different image quality degradation. The major
advantage of our method is that the proposed localization
invariance loss enhances the robustness of the detector against
image quality degradation. Moreover, the Mask-guided Trans-
former is designed to better capture the difference between the
forgery region and its surroundings, which allows the model to
learn robust and discriminative features. Finally, we utilize a
multi-task learning strategy to optimize the network in an end-
to-end manner. We conduct extensive experiments to evaluate
the performance of the proposed LiSiam. Promising results
demonstrate the effectiveness of our approach for deepfake
detection.

In future work, we will extend our frame-level method to the
video level with a temporal association strategy. Our goal is to
utilize temporal information for learning more robust features
and discovering temporal forgery traces.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on January 07,2024 at 12:18:45 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: LiSiam: LOCALIZATION INVARIANCE SIAMESE NETWORK FOR DEEPFAKE DETECTION 2435

Fig. 8. Grad-CAM visualization of the feature maps learned by the networks
in cross-quality evaluation.
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