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Abstract

Generating high-fidelity full-body human interactions with
dynamic objects and static scenes remains a critical challenge
in computer graphics and animation. Existing methods for
human-object interaction often neglect scene context, leading
to implausible penetrations, while human-scene interaction
approaches struggle to coordinate fine-grained manipulations
with long-range navigation. To address these limitations, we
propose HOSIG, a novel framework for synthesizing full-
body interactions through hierarchical scene perception. Our
method decouples the task into three key components: 1) a
scene-aware grasp pose generator that ensures collision-free
whole-body postures with precise hand-object contact by in-
tegrating local geometry constraints, 2) a heuristic navigation
algorithm that autonomously plans obstacle-avoiding paths in
complex indoor environments via compressed 2D floor maps
and dual-component spatial reasoning, and 3) a scene-guided
motion diffusion model that generates trajectory-controlled,
full-body motions with finger-level accuracy by incorporating
spatial anchors and dual-space gradient-based guidance. Ex-
tensive experiments on the TRUMANS dataset demonstrate
superior performance over state-of-the-art methods. Notably,
our framework supports unlimited motion length through au-
toregressive generation and requires minimal manual inter-
vention. This work bridges the critical gap between scene-
aware navigation and dexterous object manipulation, advanc-
ing the frontier of embodied interaction synthesis.

Code — https://github.com/yw0208/HOSIG

Introduction

Embodied intelligence represents a pivotal frontier in Al
research, aiming to develop agents capable of navigat-
ing and manipulating 3D environments. While existing
works have extensively explored human-object interaction
(HOI) (Taheri et al. 2024; Zhang et al. 2024b; Petrov et al.
2024; Wu et al. 2022; Zheng et al. 2023; Li, Wu, and Liu
2023) and human-scene interaction (HSI) (Karunratanakul
et al. 2023; Xiao et al. 2023; Zhao et al. 2023; Zhang and
Tang 2022a; Wang et al. 2024b), few address the integrated
human-object-scene interaction (HOSI) challenge (Wu et al.
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2024; Jiang et al. 2024b,a; Lu et al. 2024). As shown in
Figure 1, our goal is to enable characters to move in com-
plex scenes, complete precise object operations, and seam-
lessly connect them into a long-term motion. The inherent
complexity of synthesizing these multimodal interactions
presents critical unsolved challenges in spatial reasoning and
motion coordination.

While recent advancements in HOI (Yang et al. 2024;
Song et al. 2024; Peng et al. 2023; Taheri et al. 2022; Ghosh
et al. 2023; Zhang et al. 2024a), they predominantly ne-
glect 3D scene constraints. This oversight leads to implau-
sible human-scene interpenetration, highlighting the neces-
sity for scene-aware reasoning. Besides ignoring the scene
in HOI, current HSI approaches exhibit two limitations: 1)
Global scene encoding methods (Wang et al. 2024b, 2022b;
Huang et al. 2023) lack granularity for precise motion syn-
thesis, and 2) Local context perception strategies (Cen et al.
2024; Mao et al. 2022; Ghosh et al. 2021) struggle with
pathfinding in complex environments, resulting in persis-
tent interpenetration during long-range motion generation.
These dual challenges underscore the need for unified scene-
object-agent coordination.

Inspired by the above observations, we propose HOSIG,
a hierarchical scene-aware framework that integrates three
core components: (1) Scene-aware grasp pose generator for
precise object manipulation with hand contact in 3D scenes,
(2) Collision-aware navigation planner enabling obstacle-
avoiding pathfinding in complex scenes, and (3) Trajectory-
controlled motion synthesizer generating unrestricted-length
whole-body motions through multi-modal condition integra-
tion. Our hierarchical architecture operates through three
perception levels: local (object grasping positions), global
(scene navigation topology), and path-aligned (continuous
spatial guidance). Unlike prior works, HOSIG achieves
unified coordination of dynamic object manipulation and
static scene interaction while maintaining motion coherence
through iterative refinement with spatial constraints.

Our technical implementation features three key innova-
tions. First, the grasp pose generator augments the cVAE
framework (Taheri et al. 2022) with local scene geome-
try constraints, producing physically-plausible hand-object
orientations that prevent scene interpenetration. Second, a
novel 2D scene abstraction layer enables efficient naviga-
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Figure 1: Human-Object-Scene Interaction Generation. Our proposed HOSIG can generate high-fidelity full-body human
motions. HOSIG can not only generate interactions with static scenes, but also generate object manipulation motions with fine
hand-object contact. Moreover, relying on iterative generation and autonomous navigation, HOISG can generate long-term

motions in complex indoor scenes.

tion through 3D environments via heuristic pathfinding on
compressed obstacle-aware maps, dynamically generating
obstacle-aware motions. Third, building upon ControlNet’s
conditioning paradigm (Zhang, Rao, and Agrawala 2023),
we develop a multi-condition diffusion framework that si-
multaneously integrates: (a) spatial anchors from navigation
paths, (b) fine-grained hand control through grasp poses,
and (c) path-aligned scene priors for continuous interac-
tion optimization. This unified architecture achieves finger-
level motion precision without auxiliary hand modules, sur-
passing previous trajectory-control methods through itera-
tive spatial constraint.
In summary, our principal contributions are:

e A scene-geometry constrained grasp generator producing
interpenetration-free full-body poses via cVAE augmen-
tation.

e A 2D scene abstraction method with heuristic pathfind-
ing for autonomous obstacle-aware navigation.

e A trajectory-language diffusion model integrating spatial
anchors and scene guidance for finger-level motion con-
trol.

e An autoregressive HOSI pipeline achieving unlimited-
length motion synthesis with full automation.

Related Work
Human-Object Interaction Generation

Research on human-object interaction (HOI) motion gen-
eration has progressed through two main paradigms. Early
approaches primarily utilized reinforcement learning (RL),

with initial works like (Peng et al. 2019, 2021) achieving ba-
sic interactions such as box touching. Subsequent RL meth-
ods developed more complex skills including basketball
dribbling (Liu and Hodgins 2018), tennis playing (YUAN
and Makoviychuk 2023), multi-object manipulation (Wang
et al. 2023), and box carrying (Hassan et al. 2023).

Then generative models are employed for direct motion
synthesis. GOAL (Taheri et al. 2022) pioneered this direc-
tion using cVAEs for grasping motions. IMoS (Ghosh et al.
2023) enabled action-label conditioned generation (e.g.,
photography, drinking). Recent works focus on language-
conditioned generation: OOD-HOI (Zhang et al. 2024b)
synthesizes human-object motions separately with contact
optimization, while HOI-Diff (Peng et al. 2023) employs
affordance-guided diffusion. Other key innovations include
TriDi’s unified modeling of bodies/objects/contacts (Petrov
et al. 2024) and CHOIS’s trajectory-constrained synthe-
sis (Li et al. 2024b). InterDiff (Xu et al. 2023) further en-
ables sequential generation from initial states.

Human-Scene Interaction Generation

Human-scene interaction (HSI) generation focuses on inter-
actions with static environments, distinguished from HOI
by the immobility of target objects. We classify scene in-
teractions (e.g., with chairs/sofas) as HSI rather than HOIL.
Current HSI research bifurcates into two technical direc-
tions: (1) scene-aware locomotion and (2) semantic inter-
action synthesis.

For locomotion generation, existing methods adopt either
data-driven (Wang et al. 2024a; Zhang and Tang 2022b;
Rempe et al. 2023) or algorithmic approaches (Wang et al.
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Figure 2: Overview of Our Pipeline. HOSIG can iteratively generate long-term motions based on spatial information, text,
and the previous motion clip. There are three parts worth noting in the pipeline: (1) SGAP generates fine grasping postures to
ensure the quality of character interaction. (2) Heuristic Navigation generates sparse human root joint trajectories to constrain
the subsequent generated motions to be within the traversable area. (3) SCoMoGen uses a dual-branch design to achieve spatial
control and adds additional joint & scene guidance during inference to achieve high-precision control.

2022a). While data-driven methods struggle in novel com-
plex environments, we propose an algorithmic solution for
robust navigation. Interaction synthesis initially produced
static poses in scenes (Zhang et al. 2020; Li and Dai 2024;
Zhao et al. 2022; Xuan et al. 2023), later evolving into
language-guided systems (Wang et al. 2022b, 2024b; Huang
et al. 2023) though requiring optimization for scene compli-
ance. Recent advances include navigation-interaction frame-
works (Yi et al. 2024) and video-generation-based meth-
ods (Li et al. 2024a) with strong generalization but limited
contact realism and motion range.

Closest to our approach, (Jiang et al. 2024b,a) enable
triadic human-object-scene interactions. However, these re-
quire frame-level action labels and precise finger positions,
whereas our method achieves comparable results using only
initial/final object states.

Method
Problem Formulation

We first formalize the task definition with five essential input
parameters: (1) scene S, (2) initial human position pg € R3,
(3) object start pose Ty € SE(3), (4) object target pose
T; € SE(3), and (5) object mesh O. Given these param-
eters, our HOSIG produces synchronized motion trajecto-
ries M = (Myj,, M,) containing both human motion M,
and object motion M,. A standard interaction sequence
typically comprises three phases: initial approach (human

navigation to T'), object manipulation (grasping and trans-
portation from T to T}), and final placement (precise po-
sitioning at T;). Moreover, our framework supports exten-
sion through auxiliary interaction nodes to achieve functions
such as sitting on a chair. Please refer to the supplementary
materials for more applications.

As shown in Figure 2, the HOSIG framework imple-
ments its functionality through three interconnected compo-
nents operating in a collaborative pipeline. The first module,
Scene-Aware Grasp Pose Generation (SGAP), computes
feasible full-body grasp poses as anchors for other mod-
ules. Subsequently, our novel heuristic navigation algorithm
with obstacle avoidance constraints computes collision-free
3D trajectories connecting the anchors. The final compo-
nent, Scene-Guided Controllable Motion Generation (SCo-
MoGen), synthesizes continuous motion sequences along
trajectories. The subsequent sections elaborate on each mod-
ule’s technical formulation.

Scene-Aware Grasp Pose Generation

As shown in Figure 2, the SGAP module is implemented
as a conditional variational autoencoder (cVAE) comprising
an encoder-decoder architecture. The encoder’s input tensor

X € R%is formed through the concatenation operation:
X =08V, D" b BLB| ()

where © € R3N;i and 3 € R0 denote the SMPL-X pose
and shape parameters respectively, V. € R400%3 repre-
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Figure 3: Visulization of Scene-Aware in SGAP. The green
box is centered on the purple bottle. In SGAP, only the
sparse scene point cloud inside the box is used, as shown
in the right figure.

sents the sampled body mesh vertices, D"7° ¢ R*00x3
encodes vertex-wise directional offsets between the human
body mesh and the nearest object surface points, h € R3
specifies the head orientation unit vector, t° € R3 captures
the object’s translational state, and B° € R1024 denotes the
Basis Point Set (BPS) encoding of the object geometry.

The critical component B?® constitutes the primary scene
perception mechanism in SGAP. As illustrated in Figure 3,
given a z-up object translation t° = (z, y, z), we construct a
scene context volume bounded by [x — 0.8, 2 + 0.8] X [y —
0.8,y + 0.8] x [0.2,1.8] meters, forming a 1.6 m3 cubic
region. To capture scene geometry, we employ a volumet-
ric sampling strategy that generates a dense point cloud P
containing both surface vertices and interior points from the
scene mesh. This sampling follows a voxel grid resolution of
8 cm?3, ensuring complete spatial coverage. The BPS trans-
formation processes P through basis projections to pro-
duce the scene encoding B® € R'024, These scene features
condition the pose generation process, enabling synthesis of
scene-adapted full-body poses.

To enforce geometric compatibility between human mo-
tions and environmental structures, we implement a physics-
informed scene distance loss. The scene distance loss L4
operates on the joint-space representation:

22 N
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where J; € R?® denotes the j-th body joint position from
the SMPL-X kinematic tree. S, € R? represents the k-
th point in the localized scene point cloud P, as shown
in Figure 3. Point numbers N is variable, depending on
the number of point clouds in the current localized scene.
This formulation imposes stronger penalties as joints ap-
proach scene surfaces. During training, £, backpropagates
collision-avoidance constraints through the cVAE’s latent
space, encouraging the generator to produce poses maintain-
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Figure 4: Pipeline of Heuristic Navigation. The blue ball in
the original scene is the starting point, and the red ball is the
end point. The obstacle-aware map is presented in the form
of a heat map, and the values correspond to the axis at the
bottom. In Heuristic Function, the dark blue dot represents
the current node, the light blue dot represents the candidate
node, and the red star represents the end point.

ing clearance from scene geometry while preserving natural
motion kinematics.

During inference, SGAP’s output parameters undergo se-
lecting to extract three critical control signals: root joint
translation a, € R3, wrist joint position a,, € R3, and hand
joint rotations a;, € R'*6, These elements constitute the
spatial anchor tuple A = (a,., a,,, a5, ), which serves as key
constraints for subsequent motion synthesis.

Heuristic Navigation on 2D Obstacle-Aware Map

Our Heuristic Navigation framework constitutes a cus-
tomized A* variant engineered for 3D point cloud envi-
ronments, designed as a plug-and-play module compatible
with other models. Crucially, the algorithm maintains full
replaceability. Any trajectory synthesis method satisfying
interface requirements can be integrated into our pipeline.
This design validates our hypothesis: global scene percep-
tion substantially outperforms local perception strategies for
long-range navigation in complex 3D environments.

As illustrated in Figure 4, the pipeline executes four co-
hesive stages. Initially, the 3D point cloud is partitioned
into volumetric blocks and compressed vertically into an
obstacle-aware map, where each grid cell encodes the point
numbers along the vertical axis. Then, this representa-
tion undergoes convolution smoothing to deliberately blur
boundaries between obstacles and walkable regions, miti-
gating the algorithm’s tendency to generate trajectories ad-
hering close to obstacle surfaces. Subsequently, a dense 2D
path is computed via our implementation, employing a dual-
component heuristic function. As shown in the lower left
corner of the Figure 4, one term evaluates Euclidean distance



to the goal, like the orange line. While the other term uti-
lizes the Bresenham line algorithm to compute cumulative
traversal costs by summing values along the direct path be-
tween candidate points and the destination, like the light or-
ange area. Finally, the resulting 2D dense path is adaptively
downsampled, added height, and transformed back into the
native 3D coordinate system to yield a 3D sparse trajectory.
This trajectory will be added to the a,. of the spatial anchor
tuple A as a root joint control signal to serve the subsequent
controllable motion generation.

Due to space limitations, if you are curious about the de-
tails of this algorithm, please refer to the detailed description
in the supplementary materials.

Scene-Guided Controllable Motion Generation

To enable the generation of high-fidelity interactions, two
key challenges must be addressed. First, effective control
over human body movement along the specified trajectory
is required, with particular emphasis on enabling precise
hand movements for object grasping. Second, in narrow and
complex scenes, relying solely on the trajectory is insuffi-
cient to guarantee scene avoidance. Thus, a mechanism for
deeply integrating scene information into the motion gener-
ation process is necessary. To address these two challenges,
we respectively propose two corresponding approaches.
Controllable Generation A ControlNet-like architecture
is employed, where spatial control signals serve as inputs
to the control branch for generating motions aligned with

trajectories, as illustrated in Figure 2. Specifically, the main
L

branch of SCoMoGen takes the motion noises {Mt} and
t=0
the text embedding encoded by CLIP as inputs, and out-

puts next motion segmentation. Among them, for motion
coherence, My to M, are the last 11 frames of the pre-
vious motion segment. The control branch of SCoMoGen
takes control signals as inputs. The control signals are con-
verted from spatial anchor .A, where uncontrolled parts are
set to 0. Key designs consist of initializing the control
branch with pretrained weights from the main branch and
implementing zero-initialized connection layers. These de-
signs enable the incorporation of additional control capabil-
ities while preserving the original model’s generative per-
formance. Notably, for the first time, SCoMoGen achieves
full-body control encompassing hand control. This advance-
ment stems from optimized hand pose representation: wrist
and 15 finger joints are parameterized using 6D global ro-
tations within the world coordinate. Deviations in trunk
joint rotations result in cumulative error propagation through
SMPL-X’s kinematic chains in conventional methods. The
proposed representation determines hand poses through 16
global joint rotations combined with wrist positioning, ef-
fectively eliminating error accumulation pathways.

Joint & Scene Guidance Despite the implemented spa-
tial control mechanisms, generating motions that satisfy pre-
cision requirements remains challenging, since minor devi-
ations in interactive tasks can produce noticeable motion
artifacts. To address this limitation, gradient-based guid-
ance (Guo et al. 2024) is incorporated to facilitate human-
scene interaction generation without requiring additional

° : Path Waypoint @) : Body Joint
p: Hand Joint

: Attraction =====> : Repulsion

Figure 5: Visulization of Guidance in SCoMoGen. Precise
control of motions is achieved through gradient-based guid-
ance. Green arrows represent joints being attracted by green
anchors (hand joints, path waypoints). Red arrows represent
the repulsive force on the joint (red body joint) close to the
scene.

motion post-processing. As depicted in Figure 5, two com-
plementary constraints joint-level and scene-level guidance
are implemented within the framework.

The joint constraint £; establishes attraction forces be-
tween body joints 7 and target anchors A = (a,., a,,, ap) in
3D space. For root joint j, and root anchors a,., the loss is
formulated as:

L,

£y => 15" —al|3 3)

i=1

where L, is the number of path waypoints. For hand-object
interactions, the constraint is implemented using:

Ly L .
chomd =S50 —ald) B30 - a3 @
i=1 i=1

where jq(lf) denotes wrist positions and r,(f) represents 16
hand rotations. The parameter L; typically equals 2, cor-
responding to two key poses generated by SGAP for object
pickup and placement. This parameter can be extended de-
pending on application requirements.

The scene constraint £, generates adaptive repulsion
forces through path-aligned point cloud. For each joint 7,
the repulsion loss is defined as:

L--y ¥

JEJT peN (4, 0.3m)

17— »l3 ®)

where N (j,r) represents scene points located within a ra-
dius r of joint j. By restricting attention to the local A/(j,7),
irrelevant scene elements are excluded, sharply reducing



Object Locomotion

Scene Interaction

Object Interaction

Methods Dist. ] Time] RatetT Pene.Rate| Pene.Mean| Pene.Max | Contact Rate T Pene. Mean] Pene. Max |

LINGO 04169 16.6100 0.2333 0.3175 0.3745 89.5247 0.2418 0.0001 0.0070

CHOIS 03602 11.5033 0.0333 0.4134 26.3719 4271.7520 0.2809 0.0001 0.0056
Ours 0.0270 13.0367 0.9333 0.1851 0.6562 201.8264 0.9800 0.0007 0.0113

Table 1: Quantitative results of human-object-scene interaction generation. This mainly involves the interaction between
human and scenes, human and objects when characters operate objects in the scene. At the same time, this also evaluates the

efficiency and accuracy of the character in carrying objects.

computational overhead and steering optimization toward a
more precise direction.

The described losses are not directly applied for result
optimization, but rather integrated with the diffusion frame-
work to refine the predicted mean p; at designated timesteps
t through:

pie = e — TV i, (ML + XL 4 AL, (6)

where 7 controls the optimization magnitude and A; » 3 bal-
ance constraint contributions. This approach demonstrates
superior motion naturalness compared to direct iterative
result optimization by preventing artifact generation from
over-constrained objectives.

Experiments
Implementation Details

Our evaluation protocol comprehensively assesses both ab-
solute performance and component effectiveness. All ex-
periments are conducted on the TRUMANS dataset (Jiang
et al. 2024b), containing 100 indoor scenes with anno-
tated human-object interactions. We establish two evaluation
axes: 1) comparison against SOTA methods in HOI and HSI
generation, and 2) ablation studies isolating our core techni-
cal innovations.

Metrics We employ two complementary metric cate-
gories: Object Locomotion Assessment evaluates spatial-
temporal performance through: (1) terminal positioning ac-
curacy (Dist: Euclidean distance to target), (2) temporal ef-
ficiency (Time: task duration), and (3) reliability (Rate: suc-
cess proportion within 0.05m threshold). Human Interac-
tion Analysis quantifies physical plausibility via SDF-based
penetration metrics: collision frequency (Penetration Rate),
hand-object contact quality (Contact Rate), average severity
(Mean Penetration Volume), and worst-case failures (Max
Penetration Depth).

SOTA Comparisons While no existing method achieves
identical functionality, we select two representative base-
lines LINGO (Jiang et al. 2024a) and CHOIS (Shi et al.
2023) for fair comparison. Quantitative evaluations cover
three axes: object locomotion, human-scene interaction,
hand-object interaction. The user study employs 30 sets of
comparison videos assessing generation performance. De-
tailed metric explanation, visual comparisons, and more im-
plementation details like baseline reproduction and training
details, are provided in the supplementary material.

Ablation Study We validate our three key designs
through controlled experiments: (1) Scene-Aware: Removes
local scene information B* and relative scene distance loss

function L4. (2) Heuristic Navigation: No additional ex-
periments were set up, and its efficiency can be reflected in
Table 1. (3) Scene-Guided: Disables gradient-based guid-
ance (Eq. 5), relying solely on joint-based optimization.

Results

Comparison Quantitative Experiments Our method
demonstrates three key advantages through comprehen-
sive benchmarking. As shown in Table 1, HOSIG achieves a
93.3% success rate in object locomotion tasks, outperform-
ing LINGO (23.3%) and CHOIS (3.3%) by factors of 4.0x
and 28.3x respectively. This quantifies our method’s en-
hanced controllability in full-body motion generation, par-
ticularly in complex navigation-objective coordination sce-
narios. The hierarchical scene perception mechanism yields
a penetration rate of 42% - 55% lower than baselines.
While LINGO shows lower mean penetration volume (0.37
vs 0.66), our method prevents catastrophic failures as evi-
denced by maximum penetration values: 201.8 vs CHOIS’
4,271.8. This confirms our layered constraint system effec-
tively balances micro/macro scene interactions. As compa-
rable contact rates (98% vs 24-28%), quantitative analysis
reveals our full-body generation enables functional hand-
object interactions, not just torching as baselines. Although
baselines have low metrics on the penetration volume, this is
mainly due to their extremely low hand-object contact rate.
Overall, ours achieves better full-body HOSI generation.

User Study The user study involved participants eval-
uating motion generation outcomes through four quality
metrics: Motion Quality, Trajectory Quality, Manipulation
Quality, and Overall Quality. Performance assessment is
conducted by measuring the relative contribution of each
method to the aggregated score, with metric definitions pro-
vided in supplementary materials. As depicted in Figure 6,
our HOSIG method outperforms both baselines across all
metrics, achieving values approaching 50% — the theoreti-
cal maximum for each indicator. This demonstrates that our
method is consistently preferred over alternatives in pairwise
comparisons. The subjective evaluations align with quanti-
tative experimental results, closely matching the observed
performance hierarchy HOSIG > LINGO > CHOIS. These
findings collectively demonstrate that hierarchical scene per-
ception enables HOSIG to achieve robust human-object-
scene interaction synthesis.

Ablation Study

Scene-Aware The Scene-Aware variant (removing local
point cloud constraints) reveals critical insights into our
spatial mechanism. As shown in Table 2, the full SGAP
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Figure 6: User Study. Users are asked to rate generated mo-
tions based on four different indicators, with the best being
3 points, the middle being 2 points, and the worst being 1
point. The scores are then tallied and the proportion of each
method is calculated. The best result that could be obtained
is 0.50. The closer it is to 0.50, the better the performance.

model improves scene interaction metrics by 16.3% (pen-
etration rate), 69.9% (mean penetration volume), and 59.4%
(max penetration volume) compared to the ablated ver-
sion. Crucially, object interaction precision remained sta-
ble with < 2% variation in grasp success rate, confirm-
ing that scene awareness enhances environment adaptation
without compromising manipulation capabilities. The mod-
els trained without the scene distance loss (Eq. 2) suffer from
higher penetration in scene avoidance, as unstructured scene
features introduce noise in the latent space. In conclusion,
SGAP not only needs additional scene information B*® to
perceive the scene, but also needs corresponding loss L4 to
learn how to use the scene information. Both scene informa-
tion and scene distance loss are indispensable.

Heuristic Navigation The efficacy of our Heuristic Navi-
gation framework manifests most prominently in two critical
metrics: temporal efficiency (Time in Object Locomotion)
and collision integrity (Penetration Rate in Scene Interac-
tion). As quantified in Table 1, our approach achieves a 3.6
second average improvement in task completion time over
the LINGO baseline. This significant acceleration stems di-
rectly from global scene comprehension, which enables an-
ticipatory obstacle avoidance and optimal route planning.
Conversely, local perception methods frequently encounter
pathological scenarios, particularly in geometrically com-
plex environments. Myopic decision making leads to nav-
igation dead-ends and recovery behaviors, as qualitatively
demonstrated in our supplementary visualizations. Further-
more, our method’s superior Penetration Rate (| 23% versus
LINGO) also confirms enhanced path precision.

Scene-Guided The Scene-Guided configuration (dis-
abling Eq. 5 in gradient-based guidance) exhibits significant

Scene Interaction

Methods Pene. Rate | Pene. Mean | Pene. Max |
SGAP 0.5533 0.4484 12.0956
w/o sd 0.7037 3.4615 134.6292
w/o sa 0.6611 1.4918 29.8254

Object Interaction

Methods Contact. Rate T Pene. Mean | Pene. Max |
SGAP 0.9833 0.0011 0.0071
w/o sd 0.9815 0.0007 0.0053
w/o sa 1.0000 0.0007 0.0061

Table 2: Ablation studies of SGAP. The w/o sd means train-
ing SGAP without scene distance loss. The w/o sa means
completely removing scene perception, including scene dis-
tance loss constraints and scene information B input to the
model.

Object Locomotion

Methods Dist | Time | Rate T
SCoMoGen 0.0270 13.0367 0.9333
w/o sg 0.5540 12.6511 0.6667
Scene Interaction
Methods Pene. Rate | Pene. Mean | Pene. Max |
SCoMoGen 0.1851 0.6562 201.8264
w/o sg 0.3043 336.6398 27326.6445
Object Interaction
Methods Contact. Rate T Pene. Mean | Pene. Max |
SCoMoGen 0.9800 0.0007 0.0113
w/o sg 0.9433 0.0008 0.0083

Table 3: Ablation studies of SCoMoGen. The w/o sg means
inferencing without scene guidance L.

performance degradation across all scene interaction met-
rics. As shown in Table 3, quantitative results show higher
penetration volumes and lower object locomotion stability
compared to our full model. Notably, the guidance mech-
anism improves hand-object alignment precision. Experi-
ments show that scenes are worth using as an additional
modality to help generate motions. This is not only to avoid
the penetration of human and scenes, but also to improve the
quality of humans’ activities in the scene, such as manipu-
lating objects.

Conclusions

We present HOSIG, a hierarchical framework for synthe-
sizing high-fidelity full-body human-object-scene interac-
tions in complex 3D environments. By decoupling the task
into scene-aware grasp pose generation, heuristic navigation
planning, and scene-guided controllable motion synthesis,
our method addresses critical limitations in existing HOI
and HSI approaches. The proposed hierarchical scene per-
ception mechanism ensures collision-free interactions while
maintaining precise hand-object contact and natural loco-
motion. Notably, our framework achieves unlimited motion
length through autoregressive generation and requires mini-
mal manual intervention, making it practical for applications
in VR, robotics, and animation.
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