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Abstract. Recently, significant progress has been made in text-based
motion generation, enabling the generation of diverse and high-quality
human motions that conform to textual descriptions. However, generat-
ing motions beyond the distribution of original datasets remains challeng-
ing, i.e., zero-shot generation. By adopting a divide-and-conquer strat-
egy, we propose a new framework named Fine-Grained Human Motion
Diffusion Model (FG-MDM) for zero-shot human motion generation.
Specifically, we first parse previous vague textual annotations into fine-
grained descriptions of different body parts by leveraging a large lan-
guage model. We then use these fine-grained descriptions to guide a
transformer-based diffusion model, which further adopts a design of part
tokens. FG-MDM can generate human motions beyond the scope of orig-
inal datasets owing to descriptions that are closer to motion essence. Our
experimental results demonstrate the superiority of FG-MDM over pre-
vious methods in zero-shot settings. We will release our fine-grained tex-
tual annotations for HumanML3D and KIT on the project page https://
sx0207.github.io/fg-mdm/

Keywords: Human Motion Generation + Diffusion Model - Zero-Shot
Generation

Introduction

)

computer vision and computer graphics. It aims to simulate and generate real-

istic human movements using computers. With the advancement of technologies
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Arms Neck Legs
His arms sway His neck is held high ~ His legs ﬁu.)ve with
freely by his sides.  and comfortably. energy, taking long
striy
- . . His legs move slowly,
His arms hang His neck is lowered.  taking short steps with

heavily by his sides. little energy.

Fig. 1. FG-MDM can generate high-quality human motions in zero-shot settings by
using fine-grained descriptions of different body parts. The two images on the left
illustrate two contrasting emotional motions. Close-Up images of the arms, neck, and
legs highlight these differences.

such as virtual reality, augmented reality, and movie special effects, there is
a growing demand for high-quality human motion generation. In recent years,
several innovative methods and techniques have emerged to tackle this challeng-
ing task [48]. Deep generative models, including GANs [1,21], VAEs [8,26,27],
and diffusion models [5,15,37,45], have been widely applied to human motion
generation.

However, there is relatively less research on generating motions in zero-shot
settings. In order to improve the zero-shot generation capability, existing work
either got help from CLIP [31] to utilize the rich semantic knowledge from CLIP
(e.g., [12,36]), or attempted to explore large-scale motion datasets without tex-
tual descriptions [17] and large-scale pseudo text-pose datasets [3,20]. Compared
to traditional human motion generation, generating motions beyond the distri-
bution of the dataset is more challenging due to the limited scale and diversity
of existing motion capture datasets.

Then, with only limited motion capture datasets available, can we still gen-
erate motions beyond the distribution of the dataset? For a textual description
defining a motion beyond the distribution of the dataset, is there any way to
associate it with motions within the dataset? For a never-before-seen motion,
the entire body’s motion is indeed unseen. However, motions of specific body
parts might be inside the dataset. Therefore, we can adopt a divide-and-conquer
strategy. By re-annotating the motion for different body parts with fine-grained
descriptions, we can associate these body parts with specific body parts within
the dataset. For example, a vague description “A person walks depressingly.” can
be reformulated as “His arms hang heavily by his sides. His legs move slowly, tak-
ing short steps with little energy...”. Leg movement in this vague unseen motion
may appear in “A person walks aimlessly and slowly.”, of which the motion is
included in the dataset. And the arm movement may appear in “His arms hang
heavily by his sides.”, of which the motion is included in the dataset. We give
two examples in Fig. 1. On one hand, adopting fine-grained descriptions allows
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the model to understand how the unseen motions are performed in detail. On
the other hand, re-annotating motions for different body parts enables the model
to learn the essence of motions better. Using fine-grained textual descriptions,
we aim to improve the model’s zero-shot understanding capability.

Although annotating fine-grained textual descriptions manually for body
parts provides more accurate data, it requires significant manual work, result-
ing in huge costs. Fortunately, with the rapid development of large language
models, OpenAl’'s GPT series models [25], known for their outstanding natural
language processing capabilities, have gained widespread attention worldwide.
In [7], Gilardi et al. demonstrated that ChatGPT performs as well as human
annotators in some tasks. In [14], Action-GPT explores the excellent capability
of ChatGPT in expanding human action descriptions. However, the generated
content tends to be excessively redundant. For our task, we carefully design a
prompt that allows ChatGPT-3.5 to provide detailed but non-redundant tran-
scriptions of text descriptions about human motion. We then use this prompt and
ChatGPT-3.5 to transcribe 44,970 short text descriptions from HumanML3D [§]
and 6,353 text descriptions from KIT [29] for model training.

With these fine-grained descriptions, we propose a new framework named
Fine-Grained Human Motion Diffusion Model (FG-MDM) for human motion
generation. Specifically, we replace the original simple and vague text with
ChatGPT-Generated fine-grained descriptions of individual body parts to guide
a transformer-based diffusion model. Following MDM [37], we encode the entire
fine-grained description with CLIP [31] as a global token of the transformer.
Apart from this global token, we further encode descriptions of different body
parts individually with CLIP as part tokens. By adopting these tokens, the model
can pay attention to both the global and detailed information of human motions,
thereby improving the accuracy and completeness of the denoising results.

Our contributions are summarized as follows:

— We present a novel framework that utilizes fine-grained descriptions of dif-
ferent body parts to guide the denoising process of the transformer-based
diffusion model. This framework is capable of generating a broader range of
motions that extend beyond the distribution of training datasets.

— We carefully design a prompt that enables ChatGPT to convert short and
vague texts into detailed but non-redundant descriptions of different body
parts. We then use this prompt to transcribe 44,970 texts from HumanML3D
and 6,353 texts from KIT into fine-grained descriptions. We will make these
fine-grained transcriptions publicly available.

— We conduct a series of experiments to evaluate our model’s ability to not only
fit the training data but also generate motions beyond the distribution of the
dataset, i.e., the generalization capability.
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2 Related Work

2.1 Human Motion Generation

There has been a great interest in human motion generation in recent years.
Previous work has explored unconditional generative models [30,47] as well as
generative models using various input conditions, such as text [5,8,37], prior
motion [24], action class [9,26], and music [16,39]. In this paper, we focus on
text-to-motion generation. Early work usually addressed the text-to-motion task
with a sequence-to-sequence model [18]. Later on, the focus shifted beyond sim-
ple action labels. For example, Guo et al. utilized variational autoencoders to
generate motions from text [8], significantly enhancing the quality and diversity
of generated motions. With the success of diffusion models in AIGC, MDM [37]
and other related work [5,15,45] have introduced diffusion models into the text-
to-motion domain, resulting in impressive achievements.

There is a relative scarcity of work that directly focuses on the zero-shot capa-
bilities of motion generation models. In [36], Tevet et al. proposed MotionCLIP to
align human motions with the CLIP space, implicitly injecting the rich semantic
knowledge from CLIP into the motion domain to enhance zero-shot generation
capability. AvatarCLIP [12] also utilized CLIP to implement a zero-shot text-
driven framework for 3D avatar generation and animation. Liang et al. [17] pre-
trained a large-scale unconditional diffusion model to learn rich out-of-domain
motion traits. In order to improve the generalization capability of motion gen-
eration models, there have been also attempts to leverage human mesh recovery
approaches [38,41-43] to collect large-scale pseudo text-pose datasets [3]. As
shown in Azadi et al. [3] and Lin et al. [20], the pre-training on such text-pose
datasets can improve the generalization to in-the-wild descriptions. However,
the static nature of text-pose data makes it difficult to well represent dynamic
motions.

The work most closely related to ours is Action-GPT [14], which introduced,
for the first time, large language models into the field of text-conditioned motion
generation. Action-GPT can be integrated into any text-to-motion model. How-
ever, it enriched only the description of action classes without providing detailed
descriptions of different body parts and guiding the model training. For another
action generation model, SINC [2] incorporated ChatGPT to identify the body
parts involved in the textual description. It achieved impressive results by gen-
erating multiple motions and concatenating them using different body parts.
Specifically, SINC divides the human body into [left arm’, ‘right arm’, ‘left
leg’, ‘right leg’, ‘torso’, ‘neck’, ‘buttocks’, ‘waist’], which we borrow from in our
work. It should be noted that both Action-GPT and SINC were designed for
motion generation based on action labels, not using natural language. There-
fore, directly comparing our work with them is not feasible. There is also a
costly method that utilizes LLMs. By fine-tuning LLMs, MotionGPT [13,46]
designed a pre-trained motion language model that supports various motion-
related tasks through prompts. In contrast, our method is more efficient and can
rapidly enhance the model’s zero-shot generation capabilities.
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ChatGPT Global Token

@ Part Description ¢  Diffusion Time-Step

\PT,| Part Token Motion Data

Text Condition: .
A person walks ]%l_ifgl_lls)e
happily.

Fine-grained description;
His arms... His legs... :
His torso... His neck... @
His buttocks and waist ...

Fig. 2. The overall pipeline of FG-MDM. The model learns the denoising process of
the diffusion model from the motion z+™ at time step ¢ to the clean motion #§™,
given the text condition. The input text is first paraphrased by ChatGPT into fine-
grained descriptions Di.x for different parts of the body, where k denotes the number
of body parts. These descriptions are then fed into a pre-trained CLIP text encoder
and projected, along with the time step ¢, onto input tokens PTi.x of the transformer.
The overall fine-grained text is further encoded into a global input token GL, pro-
viding holistic information. In the sampling process of the diffusion model, an initial
random noise z%" is sampled, and then T iterations are performed to generate the
clean motion #§™. At each sampling step t, guided by PTy., and GL, the transformer
encoder predicts the clean motion £ which is then noised back to z1™.

2.2 Diffusion Generative Models

The diffusion model is a neural generative model based on the stochastic diffusion
process in thermodynamics [10,35]. It starts with samples from the data distribu-
tion and gradually adds noise through a forward diffusion process. Then, a neural
network learns the reverse process to progressively remove the noise and restore
the samples to their original states. Diffusion generative models have achieved
significant success in the image generation field [32,33]. For conditional genera-
tion, [6] introduced classifier-guided diffusion, while [11] proposed a classifier-free
method. Given their excellent generation quality, [15,37,45] incorporated diffu-
sion models into the motion generation domain, leading to impressive results.

3 Method

Given a textual description, our goal is to generate a human motion z'" =
{z'}?, that matches the given description. The motion consists of n frames
of human poses. For each pose z° € R7*P we represent it by joint rotations
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or positions, where J represents the number of joints and D represents the
dimensionality of the joint representation. In Fig. 2, we give an overview of our
fine-grained human motion diffusion model. First, we adopt ChatGPT to perform
fine-grained paraphrasing of the vague textual description. This expands concise
textual descriptions into descriptions of different body parts. FG-MDM then
uses these fine-grained descriptions to guide a diffusion model for human motion
generation.

3.1 Prompt Strategy

We first introduce the prompt strategy adopted for generating fine-grained
descriptions. We utilize ChatGPT-3.5 to create more fine-grained descriptions
based on different body parts for a given textual description of a motion. Chat-
GPT is a conversational model based on a large language model that can engage
in natural conversations and generate corresponding responses. The answers from
ChatGPT are often directly influenced by the information and expression pro-
vided in the prompt. If the prompt offers clear and detailed questions or instruc-
tions, ChatGPT can typically provide relevant and accurate answers. However, if
the prompt is too simple, ambiguous, or unclear, ChatGPT may generate unex-
pected responses or express unclear content. For our task, we carefully design
an effective prompt by using experimental verification.

Our designed prompt is: “Translate the motion described by the given sen-
tences to the motion of each body part only using one paragraph. The available
body parts include [‘arms’, ‘legs’, ‘torso’, ‘neck’, ‘buttocks’, ‘waist’]. Here are
some examples: [Q...A...]. Question: [sentence]”. [sentence] is the vague textual
description that needs to be refined. [Q...A...] are four examples of Q&A pairs
designed manually.

3.2 Diffusion Model for Motion Generation

The basic idea of diffusion models [10,35] is to learn the reverse process of a
well-defined stochastic process. Following MDM [37], we design a text-driven
human motion generation model based on the diffusion model.

The diffusion model consists of the forward process and the reverse process,
both of which follow the Markov chain. The forward process involves adding
noise. The input is the original motion 3™ from the data distribution, and the
output is the motion z; " with adding Gaussian noise ¢ times. When enough noise
is added, the motion x1™ can approach the Gaussian distribution N'(0,I). The
reverse process aims to reduce the noise in the Gaussian noise z1" ~ N/(0,1).
In the denoising process, at diffusion step ¢, a portion of the noise is eliminated,
resulting in a less noisy motion x}'",. This step is repeated iteratively until the
noise is completely removed, generating a clean motion #§™.
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Network. We adopt a simple transformer [40] encoder architecture to imple-
ment our network G. Unlike the conventional diffusion model mentioned above,
we follow [32] and predict the clean motion #§™ instead of predicting the noise
added in each time-step. The input of G is the noised motion x} obtamed by
adding noise ¢ times to the original motion ™. The noised motion x; ", together
with the text condition tokens GL, PT}.; and the time-step t, are 1nputted to
the transformer encoder, resulting in the clean motion #™. One of the reasons
for directly predicting the clean motion in each time-step of the diffusion model
is to incorporate human geometric losses during the training of the network,
making the generated human motions more natural For each sampling step ¢,
from T to 1, our model predicts the clean motion xo , and then adds noise back
to x} After T iterations, the final clean motion #}™ is obtained. This form of
dlfqulOIl model has become commonly adopted, as do we.

Global Token and Part Tokens. For the text condition, we encode the entire
fine-grained description with CLIP [31] as a global token GL of the transformer.
Apart from this global token, we further encode descriptions of different body
parts individually with CLIP as part tokens PT7.;, where k denotes the number
of body parts. The global token serves as an overall condition to guide the diffu-
sion process. Part tokens provide explicit information for fine-grained control of
the movements of each body part. Part tokens effectively make up for the ambi-
guity of the original description text. It greatly enhances our FG-MDM’s ability
to understand in-the-wild text, making it outstanding on zero-shot generation
tasks.

Loss Functions. For training the diffusion model, we follow [32] to predict the
signal itself instead of predicting the noise, i.e., 2" = G(z",t,¢), with the
simple loss function.

Lg = Extl]:"mq(wé:"\c),tw[l,T] H |xén - G(xt1m7 2 C)] |2] (1)

In order to generate more natural and kinematically plausible motions, we
employ the same geometric losses as MDM [37] from [26,34], i.e., positions, foot
contact, and velocities.

n

1 , ¥
Loos = - D IFK (@) — FK(@})3 @
i=1

(&) = FK(&)) - fill3, 3)

Lfoot =
n

Lyel = (6" = 2p) — (&5"" — 2p)Il3 (4)
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where F K (-) represents the forward kinematic function that converts joint rota-
tions into joint positions. For each frame i, f; € {0,1}7 is the binary foot contact
mask.

Overall, our training loss is

L= EG + Aposﬁpos + )\velﬁvel + )\foot['foo‘v (5)

where Apos, Avel, Afoot are balancing coefficients for the three geometric losses.

4 Experiments

In this section, we first elaborate the datasets, evaluation metrics, and implemen-
tation details in Sect. 4.1. We then conduct quantitative experiments to compare
FG-MDM with current state-of-the-art approaches in Sect. 4.2. To show the gen-
eralization capability of our model, we further perform quantitative experiments,
qualitative experiments, and a user study to examine FG-MDM’s ability to gen-
erate motions beyond the distribution of training datasets. Finally, to evaluate
our method comprehensively, we design two additional ablation experiments in
Sect. 4.3.

4.1 Experimental Details

Datasets. We utilize the HumanML3D [8] dataset and the KIT [29] dataset
to train and evaluate our model. The HuMMan [4] dataset and Kungfu dataset
from the Motion-X dataset [19,22] are employed to assess the models’ zero-shot
performance. HumanML3D is a recently proposed large-scale dataset of motion-
text pairs. It consists of 14,616 motion sequences from the AMASS [23] and
HumanAct12 [9] datasets, with multiple ways of describing each motion, result-
ing in a total of 44,970 text annotations. The KIT dataset, on the other hand,
is relatively smaller and contains 3,911 motion sequences along with their cor-
responding 6,353 text descriptions. For both datasets, we follow the default set-
tings, using 80% of the data for training and the remaining for testing. Motion-X
is a large-scale dataset of whole-body motions and whole-body pose annotations,
integrating several existing datasets and additional online videos. For zero-shot
testing, we utilize 100% of the HuMMan and Kungfu subsets from it. HuMMan
is a multi-modal human dataset, containing 744 motion sequences and their cor-
responding 744 texts descriptions. Kungfu encompasses many human motions
related to martial arts, with a total of 1040 motion sequences and their corre-
sponding 1040 texts descriptions.

We preprocess the 44,970 text descriptions from HumanML3D and 6,353 text
descriptions from KIT using ChatGPT-3.5. This preprocessing extends these
descriptions into fine-grained ones for our model training.

Evaluation Metrics. We employ three evaluation metrics for quantitative
experiments to evaluate our model’s ability to fit the training data: FID, Mul-
timodal Dist, and Diversity. Multimodal Dist assesses the correlation between
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embracing the leap with enthusiasm.

A person bends their legs but does not fully squat down.

A person walks cautiously.

FG-MDM MDM MLD

Fig. 3. Qualitative results with unseen motions. We compare our FG-MDM with
MDM [37] and MLD [5]. All three models are trained on HumanML3D. For better
visualization, some pose frames are shifted to prevent overlap. Please refer to supple-
mentary materials for more video demos.
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generated motions and input text. Diversity is utilized to evaluate the diver-
sity of generated motions. FID measures the difference in feature distribution
between generated motions and ground truth in latent space, which is used to
evaluate the quality of generated motions.

Implementation Details. In our study, the transformer accepts tokens whose
feature dimension is 512 as input. We use four attention heads and apply a
dropout rate of 0.1. The transformer encoder consists of 8 stacked encoder layers
to capture complex relationships and hierarchies in the data. For ChatGPT, we
adopt the gpt-3.5-turbo API provided by OpenAl. For text encoding, we employ
the frozen CLIP-ViT-B/32 model as the encoder. Our batch size is set to 64.
Additionally, we set the diffusion step to 1000. On a single NVIDIA GeForce
RTX3090 GPU, it takes about six days to train our model.

Table 1. Quantitative results on HumanML3D and HuMMan. The model marked
with * indicates that both the ChatGPT-Refined text and the manually annotated
text provided by HumanML3D are used during training. Bold text is the best result,
underlined text is the second-best result. Zero-Shot means that the models are evalu-
ated directly on HuMMan after training on HumanML3D.

Methods HumanML3D HuMMan(zero-shot)

FID| MM Dist| |Diversity] |FID| MM Dist| |Diversity?
Real 0.002%:000 |9, 974%-008 |9 503+-065 | 032%-002 193 019*:042 |4 709+-097
MAA [3] 0.774%:007 | 8.230%064 | - -
T2M-GPT [44]  10.116%543.118% 1" 19.761%051/9.631%20% 27.582%:073 |5.149%145
MLD [5] 0.473%013 13 196%-010 19.724+-082 114 970+472/27.104%924 |5.493+-101
MotionDiffuse [45]0.630% 01 |3.113%:90119.410%:049 [30.138% 712 28.747+:041 |5.357%:015
MDM [37] 0.544%044 |5 566%-027 |9 550056 113 375%-408)97 89+:055 |5 5g5+-089
FG-MDM 0.663%912 |5.649%-024 |9 476+-068 17.180%272/26.867% 930 |5.589+ 124
FG-MDM* 0.618%-009 |5 274+:048 19 563%-097 |19 460+-330|26.814F01%|5.626%1°

4.2 Comparison with Prior Work

To evaluate the performance of FG-MDM in handling zero-shot text-conditioned
motion generation, we compare our work with five recent motion generation
approaches: MAA [3], T2M-GPT [44], MLD [5], MotionDiffuse [45], and MDM
[37]. In Table 1 and Table 2, we provide experimental results on the HumanML3D,
HuMMan, and Kungfu datasets, respectively. For all experiments, We run the
evaluation five times, and “+” indicates the 95% confidence interval. For the six
SOTA methods, on HumanML3D, we directly cite their results reported in their
original papers. To examine the generalization ability of the methods, we use
HumanML3D as the training set and HuMMan and Kungfu as the test sets. To
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Table 2. Quantitative results on Kungfu. Zero-Shot means that the models are eval-
uated directly on Kungfu after training on HumanML3D.

Methods Kungfu(zero-shot)

FID| MM Dist| |DiversityT
Real 0.133%:010 192 164+041 |5 351 +-312
MAA [3] - - -
T2M-GPT [44]  12.652%429(25,826% 041 |5,702%428
MLD [5] 18.524%-352 197,182+:020 |5 598+-356
MotionDiffuse [45]26.363% 337 126.320%-035 |6.117+:59
MDM [37] 16.396%466 126.280%995 |5 468% 5%
FG-MDM 19.340%797 126.845%952 |5 142%:759
FG-MDM* Mi.sm 25-325i'OS5Mi‘479

do so, we train TMR [27,28] using the HuMMan and Kungfu datasets to obtain a
pair of text encoder and motion encoder for calculating the MM Dist metric. For
SOTA methods, we apply their released pre-trained models on HumanML3D to
HuMMan and Kungfu to evaluate their zero-shot generation performance. Since
MAA [3] does not release the pre-trained model, we cannot test its zero-shot gen-
eration performance.

When evaluated on the test set of HumanML3D, all five methods achieve
state-of-the-art performance. For FG-MDM, the ChatGPT-Refined fine-grained
textual description doesn’t match the manually annotated textual description
well. Therefore, under within-dataset settings, our model does not exceed those
SOTA models on HumanML3D. However, on the HuMMan and Kungfu datasets,
FG-MDM captures most of the best and second-best results. Note that the size
of our training dataset is much smaller than some SOTA methods like [3], but
we still demonstrate solid zero-shot capabilities.

In addition, we provide some qualitative results to let readers intuitively
feel the superiority of our method. In Fig. 3, we show motions generated by
MDM [37], MLD [5] and our FG-MDM. Note that for all three methods, we use
models trained on HumanML3D to generate motions. In comparison, our method
generates motions more consistent with the details described in the fine-grained
textual descriptions. This shows that our divide-and-conquer method works.
Motion generation models require clear and specific conditions to generate the
motions needed.

4.3 Ablation Study

To validate our contribution, we conduct two ablation studies. As shown in
Table 3, the first row shows our baseline. The first study examines the contribu-
tion of ChatGPT-Generated fine-grained texts, which is performed by replacing
the original short text with the fine-grained description. The improvement can
be said to be huge. We cleverly utilize the powerful reasoning capabilities of
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Table 3. Ablation study results on HumanML3D and KIT. “Fine-Grained” denotes
using ChatGPT-Generated fine-grained descriptions. “Part” represents adopting part
tokens. Note that the models are trained on HumanML3D.

Fine-Grained|Part HumanML3D KIT

FID| MM Dist] Diversity T[FID] MM Dist| Diversity
4.363 |7.298 8.432 16.372/10.502 8.758

v 1.050 6.778 9.509 0.549 |9.826 10.829

v v’ 10.663/5.649 9.476 0.344(9.352 10.707

LLMs and let them help our generative model better understand the nature of
text conditions, bringing a leap to the zero-shot performance. The second study
checks the contribution of part tokens when fine-grained descriptions are used.
As observed, a reasonable framework also improves the quality of generated
motions. However, perhaps more conditions bring more constraints to genera-
tions, leading to a decrease in diversity. But this drop is acceptable. So, we finally
adopt the design of part tokens.

least matching = .1 [  most matching

100%
90%
80%
70%

60%
50%
40%

30% 37%
20%
10%

0%

FG-MDM MotionDiffuse

36%
37%

Fig. 4. User study results. For each method, a color bar ranging from blue to red
represents the percentage of text-to-motion match levels, with blue indicating the least
match and red indicating the most match. (Color figure online)

4.4 User Study

To further examine FG-MDM’s generalization capability, we conduct a user
study to evaluate the quality of motions generated by our model based on human
visual perception. We customize a total of 40 textual descriptions beyond the dis-
tribution of the dataset. With these descriptions, we generate motions by using
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MDM [37], MotionDiffuse [45], and our FG-MDM. We then recruit 10 users for
the study. In each question, participants are asked to rate the degree of matching
between the generated motion and the textual description on a scale of 0 to 2.
The results are given in Fig. 4. Apparently, FG-MDM matches texts much better
in generating motions beyond the distribution of the dataset than the other two
methods. Nearly half of the generated motions get the highest score. In contrast,
MDM and MotionDiffuse perform poorly. Most of the generated motions are not
satisfactory.

5 Conclusion

In this study, we used LLMs to perform fine-grained paraphrasing on the textual
annotations of HumanML3D and KIT. With these fine-grained descriptions, we
explored a Fine-Grained Human Motion Diffusion Model. It utilizes fine-grained
descriptions of different body parts to guide the training of a diffusion model.
This enables it to learn the essence of motions and thus generate motions beyond
the distribution of training datasets. In the future, we would like to improve the
quality of fine-grained annotations of human motions. Having high-quality text
labels will greatly promote research on human motion generation.
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