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On the Use of Discriminative Cohort Score
Normalization for Unconstrained
Face Recognition

Massimo Tistarelli, Senior Member, IEEE, Yunlian Sun, and Norman Poh, Member, IEEE

Abstract—Facial imaging has been largely addressed for
automatic personal identification, in a variety of different
environments. However, automatic face recognition becomes
very challenging whenever the acquisition conditions are uncon-
strained. In this paper, a picture-specific cohort normalization
approach, based on polynomial regression, is proposed to enhance
the robustness of face matching under challenging conditions.
A careful analysis is presented to better understand the actual
discriminative power of a given cohort set. In particular, it is
shown that the cohort polynomial regression alone conveys some
discriminative information on the matching face pair, which
is just marginally worse than the raw matching score. The
influence of the cohort set size in the matching accuracy is also
investigated. Further, tests performed on the Face Recognition
Grand Challenge ver 2 database and the labeled faces in the wild
database allowed to determine the relation between the quality
of the cohort samples and cohort normalization performance.
Experimental results obtained from the LFW data set demon-
strate the effectiveness of the proposed approach to improve the
recognition accuracy in unconstrained face acquisition scenarios.

Index Terms— Biometric verification, face recognition, cohort
score normalization.

I. INTRODUCTION

EOPLE can naturally recognize others from their face

appearance. The human visual system is capable of per-
forming this task very quickly and almost effortlessly. The
current automatic face recognition systems can also perform
this task reasonably well in a number of practical applications,
whenever the face image capture process is controlled or
constrained [1]. However, several challenges still need to be
addressed for unconstrained face recognition. In this setting,
the face images of the same person appear very differently due
to variability in the acquisition environment (e.g., under differ-
ent illumination conditions), facial expression, the interaction
with the face acquisition device (different head poses) and the
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alteration of the face traits due to either natural factors [2]
or plastic surgery [3]. In order to deal with these variations
effectively, earlier efforts have been mainly devoted to recog-
nize faces collected in controlled lab environments. A number
of face databases have been assembled to understand the
effects of variability due to head poses, lighting conditions,
expressions and occlusions. With these databases, many face
recognition algorithms have been developed. According to the
type of features used, the existing algorithms can be broadly
classified into holistic and local methods. Subspace and mani-
fold learning methods are among the holistic methods [4], [5].
Local methods include the widely used Gabor wavelets [6],
local binary patterns (LBP) [7] and scale-invariant feature
transform (SIFT) [8]. With these developed algorithms, face
recognition in controlled conditions has achieved impressive
improvement in performance over the years [9].

Face recognition in unconstrained scenarios has two relevant
applications: surveillance and semantic web search. With the
popularity and increasing number of video surveillance cam-
eras installed in public places, face recognition is no doubt
an important instrument in the fight against crime. At the
same time, social networks such as Picasa and Facebook have
generated an unprecedented volume of photos and videos.
Automatic face recognition will play an increasingly important
role to improve speed and efficiency in retrieving contents.
For instance, photo tagging is a convenient feature that allows
the end user to quickly retrieve photos of friends and family.
Face images stored in social networks or found in surveillance
videos are often captured in uncontrolled environments. These
applications call for more robust automatic face recognition
algorithms [10].

Face recognition can refer to a number of different tasks
including, but not limited to: face identification, face verifica-
tion and face pair matching [11]. Given a probe face image
(or video), face identification aims to establish the identity of
the individual from a gallery set of users. In face verification,
the goal is to decide whether the identity of a submitted (query)
face image (or video) is the same as the one claimed by the
user. Similarly, face pair matching aims to determine whether
two pictures represent the same individual or not. While for
face identification and verification some statistical information
on the user distributions as well as more images can be
collected and available, in the case of face pair matching, the
only available information is the photometric data contained
in the two pictures. The lack of additional information makes
face pair matching particularly difficult.
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Examples of matching and non-matching pairs from the LFW

The Labeled Faces in the Wild (LFW) database [12] is
a relatively new benchmark for evaluating algorithms for
unconstrained face pair matching. Faces in this database are
collected from news articles in the web embedding a large
and unpredictable variability. Fig. 1 shows some matching
(two images are from the same person) and non-matching
(two pictures are of different subjects) pairs from this database.

In recent years, cohort samples (identities of cohort samples
are different from those of samples being compared) have been
extensively used to improve the recognition performance of a
biometric expert [13], [14]. These approaches have often been
referred to as cohort score normalization. In this paper, we
exploit the usefulness of this approach for matching face image
pairs, captured under unconstrained conditions. In particular,
it is worth showing whether post-processing the raw matching
scores using cohort normalization can achieve performance
which is comparable to the state-of-the-art algorithms for
unconstrained face pair matching. In addition, to achieve a
better understanding of cohort behavior, an extensive experi-
mental exploration on both the LFW database and the Face
Recognition Grand Challenge (FRGC) ver2.0 database [15]
will be presented.

This paper encompasses a preliminary work reported in [16]
and yet provides a better understanding of discriminative
cohort behavior. The main contributions in this paper include:

1) Picture-Specific Cohort Normalization for Face Pair
Matching: For each picture in the image pair, an exclu-
sive cohort score list is composed. Some discriminative
information is then extracted from the two cohort score
lists for score normalization.

2) Comparison With the State-of-the-Art Methods: The
proposed system is compared against the state-of-the-
art algorithms using the LFW database.

3) Better Understanding the Behavior of Cohort
Normalization: In particular, four important issues
are addressed:

a) How much discriminative information is contained
in the cohort samples alone? This discriminative
information can be empirically quantified in terms
of Equal Error Rate (EER) [17].
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b) How do the choice and the size of the cohort set
affect the normalization performance?

c) What is the result of employing cohort samples of
different quality?

d) Should a cohort set contain as many as possible
subjects (each subject with the fewest possible
samples) or as few as possible subjects (each sub-
ject with the utmost possible number of samples)?

II. RELATED WORK

In this section, a concise literature review on unconstrained
face recognition and cohort score normalization is reported.

A. Unconstrained Face Recognition

Since its release in 2008, the LFW database has received a
considerable attention for benchmarking face recognition algo-
rithms. Several algorithms were also developed, specifically
for handling large amounts of real-world face images [18].
Among these algorithms, quite a few focus on designing
powerful facial descriptors, either handcrafted or data-driven.
Some examples are the patch-based LBP codes [19], the
learning-based (LE) descriptor [20], the discriminant face
descriptor (DFD) [21], the local quantized patterns (LQP) [22]
and the local higher-order statistics (LHS) [23]. Other
methods, instead of devising an elaborated representation of
the face, aim to learn an appropriate similarity measure to
better compare pairs of unconstrained samples. These metric
learning-based techniques have shown a great potential.
Logistic Discriminant Metric Learning (LDML) [24], Cosine
Similarity Metric Learning (CSML) [25], Pairwise-constrained
Multiple Metric Learning (PMML) [26] and Similarity Metric
Learning over the intra-personal Subspace (Sub-SML) [27],
are some representative algorithms.

It is worth noting that in unconstrained face pair matching,
there is no additional information to better drive the matching.
The only available data is the photometric information embed-
ded in the image pair. To compensate for the lack of infor-
mation, many recent approaches first assemble an independent
background face database to extract some useful information
to help the matching. Generally, the background face database
does not contain pictures of the subjects appearing in the
two images being compared. From a set of background sam-
ples, Wolf. et al defined several similarity functions to learn
a discriminative model exclusive to the pair of images
being compared: One-Shot Similarity (OSS), Two-Shot
Similarity (TSS) and ranking similarity [19]. In [28], an
additional identity data set was employed for building a set
of either attribute or simile classifiers. For comparing two
faces under significantly different settings, Yin et al. proposed
to “associate” one input face with alike identities from an
extra generic identity data set [29]. Liao et al. [30] proposed
an alignment-free sparse representation approach for partial
face recognition. In this approach, the gallery descriptors were
extracted from a set of background face images together with
one of the two images being compared. In [31], an indepen-
dent training set was organized to build a Gaussian Mixture
Model (GMM) [32] from the spatial-appearance features.
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Fig. 3. A sample face verification system augmented with cohort score
normalization.

B. Cohort Score Normalization

In a typical biometric verification system, the decision on
the identity of the biometric sample is directly based on the
matching score between the query sample and the claimed
template model. Due to various sources of noise in the data
capturing process, the biometric samples are often degraded,
making the straightforward usage of the raw matching score
unreliable. Therefore, post-processing the raw matching score,
or score normalization [33], [34], becomes an essential stage.
However, in many practical applications, only very few sam-
ples (or just one) are available for each subject, making it
difficult to estimate the statistics of the client and impostor
classes. Cohort-based score normalization is a technique used
for mapping the raw matching score to a domain where the
corrupting effect, caused by the large variability on the data,
is reduced. Some information from a set of cohort samples,
i.e., non-matching samples/impostors of the claimed identity,
is required.

Cohort models have been proposed to model language
processing and lexical retrieval [35]. For biometric appli-
cations, this technique was initially proposed for speaker
recognition [13], [14]. In the literature, the term “background
model” was also used to indicate the same concept [14]. This
technique has been successfully applied to fingerprint verifi-
cation [36], face verification [37], multi-biometrics [38] and
under-sampled face identification [39]. Figures 2 and 3 show
a conventional face verification system and the same system
augmented with cohort normalization (face images are from
the AR database [40]). A set of cohort scores is obtained by
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matching either or both of the two face images being compared
with the cohort samples. Score normalization is performed by
either estimating the score distribution parameters from the
computed cohort scores, or extracting auxiliary information
from the sorted cohort scores.

In the literature, many cohort-based score normalization
approaches have been proposed. Zero-normalization
(Z-norm) [41] and Test-normalization (T-norm) [41] are
the two most common algorithms adopted in practical
biometric applications. As both techniques assume a Gaussian
distribution for each subject class, the first and second order
moments of the cohort scores are computed for scaling the
distributions. However, the cohort scores used in the Z-norm
are the matching scores between the template and the cohort
samples, while those applied in the T-norm are the matching
scores between the query and the cohort samples.

In addition to the standard estimation and scaling involved
in the Z-norm and T-norm, the methods proposed in [37], [38],
and [42] attempt to further exploit the patterns of the
sorted cohort scores. Among these approaches, the polynomial
regression-based cohort normalization [37] has achieved
promising results in some biometric applications. This tech-
nique drew its motivation from the observation that cohort
samples, sorted by their similarity to the claimed target model,
produced a discriminative pattern. In [37] polynomial regres-
sion was proposed to extract this discriminative information.
In this approach, the matching scores of the cohort samples
are computed against both the query sample and each enrolled
template to determine a user-specific cohort rank ordering.

III. PICTURE-SPECIFIC COHORT SCORE NORMALIZATION

In principle, a subject-specific face representation
allows to maximize the discrimination capability for each
individual [44]. This approach requires to develop a
computational model which embodies peculiar information
for each subject.! By tailoring the analysis to each user, any
identity claim is adapted to the user, or more precisely to
the model associated with the user. This is accomplished by
applying a polynomial regression-based cohort normalization
to face pair matching scores. This process can normalise the
variations in the score distribution due to the appearance of
the two faces in a given pair of images. Fig. 4 schematically
depicts the picture-specific cohort normalization process.

The proposed computational model also agrees with some
psychophysical findings [43]. These suggest that the human
visual system encompasses a model formation process for
objects, including faces, where several continuous compar-
isons with other objects, or faces, are made i.e., by performing
a repeated, comparative analysis, or pair-wise matching.

A. Picture-Specific Cohort Ordering

In a face verification system, the distribution of the cohort
scores, obtained by matching a number of impostor and

1t is worth noting that the hypothesis space, made upon the score distribu-
tions of the probe and gallery samples belonging to the same person (match;
genuine user/client; positive class) or a different one (non-match; impostor;
negative class), can be very different from one user model to another.
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Fig. 4. Schematic process of picture-specific cohort score normalization for
face pair matching.

genuine query samples with cohort samples, sorted with
respect to their similarity to the claimed template, exhibits
a discriminative pattern [37]. Therefore, it is reasonable to
assume that in the face pair matching scenario, sorted cohort
scores of matching pairs and non-matching pairs imply sim-
ilar discriminative patterns. This assumption will be further
verified in the experimental section.

Let (14, I?) denote an image pair to be compared and sc©
be the corresponding raw matching score. Given an additional
fixed cohort set C = {c1,...,¢n,...,cH}, composed of H
cohort samples, an exclusive cohort list for each of / Aand I8,
named C# and C&, is composed. Both C# and C? are sorted
variants of C, the only difference among the three sets lies in
the rank order of the cohort samples.

A set of cohort scores are computed by matching each
picture of the pair and all the cohort samples in C. C4 is
obtained by sorting all cohort samples with respect to their
closeness to I5. In other words, {cf, e, c;z‘, R c;_‘l} are
the H sorted cohort samples in C4, where cf is the most
similar cohort sample to / B while cg is the most dissimilar
one. In the same way the cohort list {c?,...,cf, ..., c%} for
picture / B is assembled, where clB is the most similar cohort
sample to [4. Two picture-specific cohort score lists sc4 =
{scf‘,...,sc}?,...,scg} and scf = {scfg,...,scf,...,scf]}
are then obtained. The H scores in sc? are all the matching
scores between /4 and each cohort sample in C4, where
sciA is the matching score between image /4 and the cohort
sample ciA.

In summary, two picture-specific cohort score lists are gen-
erated using cohort samples sorted by the respective matching
scores. This is different from the approach proposed in [37],
where only one user-specific cohort score list is generated
by cohort samples sorted according to their closeness to the
claimed template. Given the two cohort score lists sc® and scB,
the embedded discriminative patterns are extracted by means

of a polynomial regression.

B. Extraction of Discriminative Patterns
Using Polynomial Regression

The sorted cohort scores are first considered as discrete
points on a function of rank orders. More specifically, given

the two picture-specific cohort score lists sc? and sc5,
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Fig. 5. Cohort score profiles and the corresponding fitting lines for a matching
pair and a non-matching pair, computed from the LFW database.

the following two rank orders functions are obtained:

sep = fA(h) 1
scP = B ) 2

where h = 1,2, ..., H. Polynomial regression is applied to
approximate the two functions as follows:

A0 ~ wih" +wl Bt wth i (3)
By~ wln" +wB i+ wPh @)

where w? = [wé, wf, e, w,’?] and w? = [wg, wf, e, wf]

are the two approximated polynomial coefficient vectors. The
cohort scores in sc4 and sc? can be approximated by the
n + 1 coefficients in w? and w? respectively. Therefore,
the coefficients in w4 and w® can be used to represent the
discriminative patterns embedded in the sorted cohort scores.

In order to demonstrate the effectiveness of w? and w? to
distinguish matching pairs from non-matching pairs, the cohort
score profiles (i.e., sc* and sc?) of a matching pair and a non-
matching pair, computed from the LFW database, as well as
the fitted curves (i.e., w? and w? ), are presented in Fig. 5.
In this example the polynomial degree is simply set to 1, and
a linear function is fitted through the cohort score profiles.
As it can be noticed, the profiles of the cohort matching scores
plotted against the cohort rank order are very noisy. Therefore,
it is difficult to extract any discriminative information directly
comparing the two cohort profiles. As shown in Fig. 5,
by applying the polynomial regression the noise is largely
suppressed, while the discriminative patterns are made explicit.

C. Score Normalization Using Logistic Regression

This section describes how to normalize the original match-
ing scores sc” using the discriminative patterns w* and w?
extracted from sorted cohort scores. Each of the three sets
{sc?, wA, wP} contains complementary discriminative infor-
mation which can be aggregated to enhance the recognition
accuracy. The information carried by these three sets can be
fused by training a linear SVM [45] or by applying a logistic
regression [46] to compute more discriminative weights on
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each parameter. As shown in [37], logistic regression exhibits
superior fusion performance over SVM. Therefore, a logistic
regression is applied to approximate the final normalized
scores according to the following expression:

scP=P(M|scO,wA,wB) )

where P (M | sc®, w?, wP) is the conditional probability of
(I4, IB) being a matching pair. A larger value of sc”, implies
a higher probability of /4 and I? to be captured from the
same subject.

IV. APPLICATION TO UNCONSTRAINED
FACE PAIR MATCHING

In this section, the application of the described picture-
specific cohort score normalization process to unconstrained
face recognition is discussed in detail. The LFW database is
used to benchmark the algorithm performance.

A. The LFW Database

The Labeled Faces in the Wild dataset was composed by
collecting from the web more than 13,000 face images, mostly
from celebrities and news media. Two evaluation protocols
are provided along with the dataset: image-restricted and
unrestricted. In this paper, the performance of the subject-
specific cohort normalization is evaluated on View 2, under
the restricted setting. The 6,000 image pairs included in
this subset, are divided into 10 splits, where the proportion
of matching and non-matching pairs is balanced (1:1 ratio).
As such, each split contains 300 matching and 300 non-
matching pairs. The algorithm performance is measured by
a 10-fold cross validation procedure [12]. Three versions of
the LFW dataset are available: original, funnelled and aligned.
The aligned version LFW-a, where faces are aligned with
an unpublished algorithm, is employed in all experiments
presented.

B. Face Pair Matching

The general process followed in the proposed normalization
and matching approach is presented in Fig. 6. Four main
steps are involved: preprocessing, feature extraction, cohort
normalization and decision making.

1) Preprocessing: In the LFW aligned version, all the
images are of the same size 250 x 250 pixels. At the pre-
processing step, each image is simply cropped to remove the
background, leaving only a face area of 150 x 80 pixels. At this
stage no photometric normalization is performed.
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2) Feature Extraction: Four facial descriptors are extracted
from the face images: raw intensity, Gabor [6], LBP [7] and
SIFT [8].

The first feature vector of length 12,000 is formed by
concatenating all the raw intensity values of the pixels.

To compose the LBP feature vector, each image is first
divided into non-overlapping blocks of size 10 x 10 pixels, and
a 59-bin uniform LBP histogram is computed for each block.
By concatenating the histograms computed for all blocks, a
feature vector of length 7,080 is obtained.

To compose the Gabor feature vector, each image is filtered
with a Gabor filter bank at five scales and eight orientations.
The final Gabor feature vector is obtained by concatenating the
responses at different pixels, uniformly selected with a 10 x 10
down-sampling rate. The resulting Gabor feature vector is of
length 4,800.

To compose the SIFT feature vector, each image is
divided into non-overlapping blocks of size 16 x 16 pixels.
A 128 dimension SIFT descriptor is computed for each block.
All SIFT descriptors are concatenated into a single vector of
length 5,760.

3) Cohort Normalization: The matching scores are obtained
by computing both the Euclidean distance and the Hellinger
distance between two feature vectors. As described in [37],
the degree of the polynomial used to compute the polynomial
regression has little impact on the generalization performance.
For simplicity, a linear function is employed to fit the two
cohort score functions f4 (k) and fZ(h). To perform the logis-
tic regression, an />-penalized logistic regression is computed
which corresponds to the maximum likelihood estimate.

4) Decision Making: After cohort normalization, a thresh-
old can be applied to the normalized scoresto achieve a final
decision. As the normalized score is the probability of the two
given samples to be a matching pair, generally a threshold with
a value equal to 0.5 is set. Whenever the recognition accuracy
is reported as a measure of the algorithm performance, a
threshold of 0.5 is used. Whenever the Equal Error Rate is
used as a performance measure, the corresponding threshold is
the unique operating point where the False Accept Rate (FAR)
is equal to the False Reject Rate (FRR) [17].

C. Experimental Results

In order to determine the actual performance of the proposed
unconstrained face recognition approach, several experiments
are presented, all performed on the LFW-a database.

1) Results From Individual Facial Descriptors: The first
set of experiments is designed to test the improvement in
classification accuracy by applying the cohort score normal-
ization and adopting individual facial descriptors. For each
of the 10 folds of LFW View 2, one out of the 10 splits is
reserved as the cohort split, one split as the validation set, and
the remaining eight splits for training the logistic regression
weights. It is worth noting that different cohort splits are used
in all 10 experiments.

For any of the 10-fold experiments, each dataset split is
composed of 600 image pairs, for a total of 1,200 face images.
In order to speed up the computation, only 600 randomly
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TABLE I
COMPARATIVE CLASSIFICATION ACCURACY OF DIFFERENT
DESCRIPTORS AND DISTANCES WITH AND
WITHOUT COHORT NORMALIZATION

Intensity | Gabor LBP SIFT

Euclidean 0.6502 0.6985 | 0.6500 | 0.7140
Euclidean with cohort | 0.6830 0.7560 | 0.7443 | 0.7703
Hellinger 0.6497 0.7100 | 0.7132 | 0.7183
Hellinger with cohort 0.6913 0.7680 | 0.7707 | 0.7738

selected images from the cohort split (out of the 1,200
available) are used to compose the final cohort set.?

The obtained experimental results are described in Table I.
The recognition accuracy for each feature type is reported
as computed from the Euclidean distance and the Hellinger
distance of the feature vectors. As shown in Table I, the cohort
normalization allows an improvement of about 6% over the
single Euclidean distance. By employing the LBP descriptor,
an increase in accuracy of almost 9.5% is obtained. By using
the Hellinger distance the accuracy is improved of about 5%.
The highest accuracy (77.38% correct match) is achieved by
applying the cohort normalization and the Hellinger distance
on SIFT feature vectors.

Table I shows the absolute improvement in recognition
accuracy due to the cohort normalization. However, to better
evaluate the impact of the cohort normalization, the relative
improvement of a given matching setting by using cohort
normalization, is computed. Since there are 8 independent
experiments (4 facial descriptors and 2 distances), the results
are summarised as the relative change of the EER with respect
to the performance of the baseline system [37], [47]. The EER
is chosen as measure performance due to its sensitivity to
minute changes induced by cohort score normalization. The
relative change of the EER is computed as:

EER onort — EERpaseline

rel. change of EER = (6)
EERbaseline

where EER 50, 1s the EER of a given system where cohort
normalization is applied, whereas EERp geiine is the EER
scored by the same system but without cohort normalization.
A negative change in the EER implies an improvement over
the baseline system. Confidence intervals of the relative merit
for each method with respect to the baseline system are
also computed. These confidence intervals are plotted using a
boxplot diagram, where the median, the first and third quarter
as well as the fifth and 95-th percentiles of the data are
plotted. The relative change of the EER for the described
8 individual experiments is shown in Fig. 7. As it can be
noticed, in all 8 experiments, the cohort normalization process
consistently improves the performance of the corresponding
baseline system.

2) Comparison With the State-of-the-Art: In this section
a comparison of the proposed cohort normalization-based

2The term “cohort split” is used to represent the dataset split from which
the cohort samples are selected, while “cohort set” represents the final fixed
cohort set applied for score normalization. This corresponds to the set C
described in section IM-A. CA and CB are the “cohort lists”, obtained by
ordering the cohort samples.
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Fig. 7. Boxplot of the relative change of the EER using different descriptors
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TABLE 11
COMPARATIVE CLASSIFICATION ACCURACY ON THE
IMAGE-RESTRICTED BENCHMARK (“VIEW 2”)

Algorithms Euclidean | Hellinger
Gabor(C1)-OSS 0.7396 0.7437
LBP-OSS 0.7663 0.7820
SIFT-OSS 0.7576 0.7597
SIFT-LDML-PCA(35) 0.7660 0.7750
SIFT-LDML-PCA(55) 0.7280 0.7280
Gabor-Cohort 0.7560 0.7680
LBP-Cohort 0.7443 0.7707
SIFT-Cohort 0.7703 0.7738

approach with some of the state-of-the-art face recognition
techniques is presented, through a series of experiments per-
formed on the LFW database. Due to the large diversity among
the information exploited by different algorithms (fusion of
different descriptors, as well as the application of different
distance metrics), it may be difficult to compare the per-
formances with some algorithms in the literature. Therefore,
the One-Shot Similarity (OSS, the best performing algorithm
reported in [19]) and the Logistic Discriminant Metric
Learning (LDML) [24] algorithms, using the same descriptors
and also the same distance metrics, are chosen to be compared
against the proposed cohort normalization-based system.

Table II reports the comparative results obtained from the
image-restricted benchmark (“View 2”). The image descriptors
adopted are those reported in the original literature for the con-
sidered algorithms [19], [24]. The cohort score normalization-
based system with the Gabor and SIFT features outperforms
OSS when using either the Euclidean or the Hellinger distance
measure. When adopting the LBP feature, the cohort-based
approach performs slightly worse than the OSS algorithm. The
accuracy reached by LDML on SIFT features, with PCA of
dimension 35, is comparable with the cohort normalization-
based algorithm. However, when the dimension of PCA is
increased up to 55, the performance of LDML considerably
decrease.

V. UNDERSTANDING THE COHORT BEHAVIOR

Even though much research efforts have been devoted to
exploit useful information from a cohort/background dataset
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for unconstrained face recognition, a limited knowledge has
been acquired on the cohort behavior. For example, in most
research papers, the authors randomly select a set of face
images from one or more face databases to compose the
cohort set. To the best of our knowledge, no attempt was
ever made to understand and describe how to compose an
optimal background set for a given face recognition task.
To achieve a proper understanding of the cohort behavior, a
set of experiments on both face pair matching and face veri-
fication are designed and performed. For face pair matching,
the proposed picture-specific cohort normalization-based algo-
rithm is applied, while for face verification, the polynomial
regression-based cohort normalization proposed in [37] is
adopted. As both cohort normalization algorithms extract
discriminative information from cohort samples, the analysis
of the experimental results will allow to determine the dis-
criminative cohort behavior.

A. What is the Contribution of the Cohort Set
in Matching Faces?

In this section the assumption that sorted cohort scores of
face matching and non-matching pairs imply discriminative
patterns, is verified by performing several experiments on
the LFW database. The experimental setting is similar to
that described in section IV-B. However, due to the limited
number of face pairs, in this case the cohort scores are
computed only for the eight development splits. For each
face pair, two picture-specific cohort score profiles sc4 and
scB vectors of length 600, are obtained. It is worth noting
that the ordering of the cohort score profile for 14 is
determined by IZ; and that of I8 is determined by I4.
Finally, a total of 48,000 (= 2 x 300 x 8 x 10) match-
ing cohort score profiles and 48,000 non-matching cohort
score profiles are computed. The same experimental setting
is applied for both the following qualitative and quantitative
analysis.

1) Qualitative Analysis of the Cohort Discriminative
Information: In order to qualitatively determine the discrim-
inative information in the cohort dataset, the mean and stan-
dard deviation of matching and non-matching cohort score
profiles are computed. The distributions obtained using the
Gabor and LBP features with Euclidean distance are shown
in Fig. 8 and Fig. 9. It can be readily observed that the two
distributions have a different behavior. In fact, the cohort score
profiles of matched face pairs show a steepest slope than
the profiles of non-matched face pairs. This implies that the
scores of matched face pairs increase with the rank order. This
qualitative observation verifies the assumption that the cohort
score profiles, sorted by the reciprocal face image, contain
some discriminative information.

2) Quantitative Analysis of the Cohort Discriminative
Information: The quantitative evaluation of the discriminative
power for face pair matching, embedded in the sorted sorted
cohort scores alone, is based on the computation of the Equal
Error Rates. A comparison of the EERs, computed from the
original matching scores and from the cohort discriminative
patterns, is reported in Table III. The rows marked as “sc?”
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Fig. 8. Distribution of the cohort scores generated by the ordered cohort
samples for matching and non-matching pairs using Gabor features.
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Fig. 9. Distribution of the cohort scores generated by the ordered cohort
samples for matching and non-matching pairs using LBP features.

TABLE III
COMPARATIVE EERS COMPUTED FROM THE RAW SCORES
AND THE COHORT DISCRIMINATIVE PATTERNS ALONE

Intensity | Gabor LBP SIFT
(o)

ScC
(Buclideany | 03453 | 03047 | 03477 | 0.2980
wh =+ wB
(Buclideany | 03603 | 03717 | 0.3793 | 0.3557

sc? 0.3480 | 0.3000 | 0.2963 | 0.2927
(Hellinger) - ' ’ ’

A B

W+ w 0.3417 | 03667 | 0.3587 | 0.3580
(Hellinger)

report the EERs computed by using only the raw matching
score, while the rows marked as “w* + w?” report the EERs
computed by using only the discriminative patterns extracted
from the sorted cohort scores. The latter EERs are obtained by
means of a logistic regression, performed using only the two
approximated parameters and without the raw score. The EERs
computed from the cohort patterns is generally higher than
those obtained by using the raw matching score. When using
the raw intensity feature, both the matching and the cohort
patterns report a very similar EER. In general, the values of the
EERs are very similar, demonstrating that the cohort ordering
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Fig. 10. Boxplot of the computed EERs with different choices of the cohort
set using the Gabor features.

itself conveys roughly the same amount of discriminative
information of the raw matching scores.

B. How do the Choice and Size of the Cohort Dataset
Affect Performance?

In all the experiments described above, the cohort set was
randomly selected from a split. However, how the choice and
size of any cohort split may impact the proposed cohort-based
normalization procedure has not been considered. A further set
of experiments is presented to evaluate the impact of these two
parameters in the system performance.

1) Impact of the Choice of the Cohort Dataset: In the first
set of experiments different splits from the data samples are
used to compose the cohort set, but the size of the cohort
dataset is left unchanged. It is worth noting that, with the
exception of the evaluation split, for each fold experiment,
one split out of a total of 9 can be used to compose the
cohort set. This implies that each fold experiment can be
performed 9 times, each time using a different cohort split.
Given a cohort split, composed of 1,200 images, 600 images
are subsampled from the set and included in the cohort set.
A boxplot of the EERs, computed on the evaluation split, is
used to illustrate the performance impact due to the change in
the cohort sets. The results obtained by applying the Gabor and
LBP descriptors and using the Euclidean distance are shown
in Fig. 10 and Fig. 11. As it can be noticed, the choice of
the cohort set involves a limited variation of the EER on the
system performance.

2) Impact of the Cohort Dataset Size: In the second set
of experiments the size of the cohort set is changed. In this
case only one fold validation is performed on the same cohort
split, but varying the number of face samples included in the
cohort set from 100 to 900 images. Given a cohort split of
M = 1200 images, m images are selected for the cohort set.
For each value of m, 100 random samplings are performed,
then the mean and standard deviation of the total 100 EERs
are computed. The results obtained by applying the Gabor and
LBP descriptors and using the Euclidean distance, are shown
in Fig. 12. The solid lines represent the mean EERs, while the
dashed lines represent the standard deviation of the EERs.
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Fig. 11. Boxplot of the computed EERs with different choice of the cohort
set using the LBP features.
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Fig. 12.  Mean and standard deviation of EERs as the number of cohort
samples increased.

As it can be noticed, the larger the size of the cohort set,
the lower the EER. Also the standard deviation of the EER
decreases with the mean. Therefore, increasing the number
of cohort samples, the EER decreases up to a point, around
800 images, when the performance saturates and the EER
slightly increases.

C. What is the Impact of the Quality of the Cohort Samples?

In the former experiment, the cohort set was composed from
different splits of the same LFW dataset. As such, all the
subsets of face samples had the same quality, thus producing
similar cohort normalization performance. To better under-
stand the impact of cohort’s quality on the generalization per-
formance, in this section, a set of experiments are performed
on datasets composed of images of different quality. Both
the FRGC ver2.0 database (with face verification protocols)
and the LFW database (with face pair matching protocols)
are used. With the FRGC ver2.0 database, the experiments
are performed aiming to explore the impact of cohort qual-
ity on matching faces obtained in controlled environments
(these will be referred as “lab faces”). On the other hand,
by performing experiments with samples from the LFW
database, the impact of cohort quality on matching faces



TISTARELLI et al.: ON THE USE OF DISCRIMINATIVE COHORT SCORE NORMALIZATION

TABLE IV
EIGHT COMBINATIONS OF QUERY AND COHORT SAMPLES,
VARYING THE QUALITY OF THE FACE IMAGES

Cohort condition | Good query Bad query

Without cohort Qgood Qbad

Good cohort QgoodCgood | QbadCgood

Bad cohort QgoodCbad QbadCbad

Joint cohort QgoodCjoint | QbadCjoint
TABLE V

NUMBER OF CONTROLLED AND UNCONTROLLED IMAGES
IN THE 5 FOLDS ON THE FRGC VER2.0 DATABASE

Fold No 1 2 3 4 5
controlled images 2,780 | 3,424 | 3,264 | 2,928 | 3,592
uncontrolled images 1,390 1,712 1,632 1,464 1,796

collected from real-world images (these will be referred as
“wild faces”) will be analysed.

1) Impact on Matching Lab Faces: In the following exper-
iments, all template models are acquired in well controlled
conditions and are made from good quality face samples.
On the other hand, the query samples are composed of both
good and bad quality face samples. Three different cohort sets
are assembled, composed of good quality, bad quality and joint
face samples. The good cohort set is composed of face images
captured in well controlled conditions. The bad cohort set is
composed of bad quality, or uncontrolled, face samples. The
Jjoint cohort set is composed of both good and bad quality face
images. In order to make a fair comparison, the three cohort
sets are composed of the same number of images.

In total 8 possible combinations of good and bad query sam-
ples and good, bad and joint cohort sets are used to perform the
experiments, as illustrated in Table IV. By denoting as “Q” the
query set and “C” the cohort set, “Qgood” implies the direct
comparison between the target and the good quality query
samples, without cohort score normalization. “QgoodCgood”
implies the matching of the target with the good quality query
samples, with the cohort score normalization, using the cohort
set made of good samples.

a) The FRGC ver2.0 database: The FRGC ver2.0
database [15] includes a testing protocol dividing the dat set
into 6 different subsets or experimental data. In the following
experiments, the face images from experiment 4 were used.
The target set consists of 16,028 controlled still images, and
the query set consists of 8,014 uncontrolled still images,
captured from 466 subjects. 465 subjects are selected to
perform a 5-fold cross validation experiment, by dividing the
465 subjects into 5 folds, each containing 465 ~ 5 = 93
different subjects. Finally, a total of 15,988 controlled images
and 7,994 uncontrolled images are obtained. For each fold,
the number of controlled images are listed together with that
of uncontrolled images in Table V. For each of the 5-fold
experiments, one fold is selected for the final evaluation, one
fold for selecting cohort samples, and other three folds for
development. In this way, the identities in the evaluation,
development and cohort sets are disjoint from one another.
Furthermore, for all 5 experiments, also the cohort folds are
different from one another.
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(a) Controlled images

(b) Uncontrolled images

Fig. 13.  Examples of aligned images from the FRGC ver2.0 database.
(a) Good quality images. (b) Bad quality images.

b) Data configuration: As shown in Table V, for each
fold, the number of controlled images is twice that of uncon-
trolled images. As shown in Table VI, the target and good
query sets are composed from the controlled images, while the
uncontrolled images are used to compose the bad query set.
According to the FRGC testing protocol, each query sample is
compared with all the target models in the target set. The total
number of resulting matching tests, for each fold, is shown
in Table VL. It is worth nothing that, for each fold, the same
number of genuine and impostor matches between “Qgood”
and “Qbad”, is obtained.

In order to compose the cohort set, the whole fold is
first divided into three partitions: target, good query and bad
query sets. Afterwards, 700 images are randomly selected from
the good query set to build the good cohort set. The same
procedure is followed to produce the bad cohort set from the
uncontrolled images. Finally, half of the images from the good
cohort set and half of the images from the bad cohort set are
taken to build the joint cohort set. As a result, all three cohort
sets are composed of the same number of images.

¢) Normalization and feature extraction: All face images
are geometrically normalized to a fixed size. From the pro-
vided coordinates of the four eye corners, the coordinates of
the two eye centers are computed, and the distance between
the eye centers is set to 60 pixels. Finally, all images are
cropped to 110 x 80 pixels. Some sample normalised images
are shown in Fig. 13. According to the setting described in
section IV-B, Gabor feature vectors of length 3,520 and LBP
vectors of length 5,192 are computed. The matching score
is computed from the cosine similarity between two descrip-
tors. A polynomial regression-based cohort normalization
(I>-penalized logistic regression, with a polynomial degree
equal to 1), is applied to extract discriminative information
from cohort samples [37].

d) Experimental results: The mean EERs of the 5 exper-
iments are reported in Table VII. “Czero” represents the
baseline system without cohort score normalization, i.e., the
“Qgood” and “Qbad” matching listed in Table IV. The best
performance is reported when matching good quality query
samples and performing the normalization with good quality
cohort samples. When matching bad query images, both the
“Cgood” and “Cjoint” cohort normalization achieves similar
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TABLE VI
DATA CONFIGURATION OF THE 5 FOLDS FOR THE VERIFICATION EXPERIMENT ON THE FRGC VER2.0 DATABASE

Fold 1 2 3 4 5
target models 1,390 1,712 1,632 1,464 1,796
good queries 1,390 1,712 1,632 1,464 1,796
bad queries 1,390 1,712 1,632 1,464 1,796
total matches 1,932,100 | 2,930,944 | 2,663,424 | 2,143,296 | 3,225,616
genuine matches 32,092 44,608 41,048 36,464 49,064
impostor matches | 1,900,008 | 2,886,336 | 2,622,376 | 2,106,832 | 3,176,552

TABLE VII
MEAN EERS OF THE 5-FOLD EXPERIMENTS ON LAB FACE VERIFICATION
WITH THREE DIFFERENT QUALITY COHORT SETS

Feature | Query | Czero Cgood | Cbad Cjoint
Gabor Qgood | 0.1123 | 0.0586 | 0.0853 | 0.0700
Qbad 0.2867 | 0.2245 | 0.2658 | 0.2122
LBP Qgood | 0.0746 | 0.0461 | 0.0568 | 0.0497
Qbad 0.3185 | 0.2330 | 0.2850 | 0.2280

performances. Cohort normalization provides worse perfor-
mance when bad quality cohort samples are employed than
using good quality cohort samples. For example, with either
Gabor and LBP features, the “Cbad” normalization produces
4.13% and 5.20% higher EERs than using the “Cgood” nor-
malization. As shown in Table VII, “QgoodCgood” achieves
5.37% and 2.85% lower EERs than the baseline system
“Qgood” when matching Gabor and LBP features.

2) Impact on Matching Wild Faces: To study the impact of
cohort quality on matching wild faces, a series of experiments
on the LFW database are performed. The same experimental
settings described in section IV-B are applied. For each of
the 10-fold cross validation experiments, the cohort set is
composed of 600 images taken from the split.

a) Lab cohort selection: In order to perform a bal-
anced evaluation, along with the cohort sets made of images
from the LFW dataset (“Cwild”), also “lab faces” from the
FRGC ver2.0 database are employed. Similarly to the previous
experimental setup, cohort sets of three different quality are
employed: “Cgood”, “Cbad” and “Cjoint”, on the same 5 folds.
For each of the 5 folds, 1,200 images are selected from
the good query set and other 1,200 images from the bad
query set. By equally partitioning the 1,200 good quality and
the 1,200 bad quality datasets, two “Cbad”, “Cgood” and
“Cjoint”, each composed of 600 images, are built. Each of
the two “Cjoint” sets is composed of 600 images, where
300 images are randomly extracted from the “Cbad” set and
other 300 images from the “Cgood” set. For each of the 5 folds
2 {*Cgood”, “Cbad”, “Cjoint”} sets are obtained, for a total
of 10 cohort sets, which are applied to perform the cohort
normalization for the 10-fold cross validation experiments
on the LFW database. It is worth nothing that all cohort
sets {“Cgood”, “Cbad”, “Cjoint”, “Cwild”}, for each of the
10-fold experiments, are made of different face samples.

b) Lab face alignment: In order to employ lab faces
to help matching wild faces, lab faces are geometrically
normalized to a common coordinate system derived from
the wild faces as explained in Fig. 14(a). A set of nearly
frontal face images are chosen from the LFW database, and

(b)

Fig. 14.  Procedure for the lab face alignment. (a) Construction of the
alignment template. (b) Sample wild faces and aligned lab faces.

TABLE VIII
MEAN EERS OF THE 10-FOLD EXPERIMENTS ON WILD FACE
PAIR MATCHING WITH FOUR DIFFERENT COHORT SETS

Feature | Czero Cgood | Cbad Cjoint | Cwild
Gabor 0.3047 | 0.3020 | 0.2953 | 0.2857 | 0.2537
LBP 0.3477 | 0.2917 | 0.2857 | 0.2657 | 0.2570

a publicly available tool [48] is applied to automatically locate
the four eye corners. The average distance between the eye
centres (46 pixels) and the average coordinates of the mid-
point between the eyes ([125, 113]) are used to geometrically
normalize the lab faces. Two sample wild faces and aligned lab
faces are shown in Fig. 14(b). The image cropping of the face
area is performed according to the same procedure described

in section IV-B1.
c) Experimental results: The mean EERs computed for

the 10-fold experiments are reported in Table VIII. Differing
from the result obtained from matching lab faces, Cohort
normalization provides better performance when bad quality
cohort samples are employed than using good quality cohort
samples. When the “Cbad” and “Cjoint” sets are employed,
the cohort normalization achieves slightly better performance
than with “Cgood” cohort samples. As expected, the best
performance is obtained by using wild samples to build the
cohort set. For example, matching Gabor and LBP features,
the “Cwild” normalization produces 4.83% and 3.47% lower
EERs than using “Cgood”. These results suggest that, when
matching wild faces, cohort samples selected from real-world
images allows to achieve better performance than using cohort
samples obtained under controlled environments.
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TABLE IX
S1X COMBINATIONS OBTAINED FOR THE TARGET,
QUERY AND COHORT SAMPLES

Cohort condition | Good query | Bad query

Without cohort Qgood Qbad

Good cohort 1 QgoodCms QbadCms

Good cohort 2 QgoodCfs QbadCfs
TABLE X

COHORT CONFIGURATION FOR THE 5 FOLDS EXTRACTED
FrROM THE FRGC VER2.0 DATABASE

Fold No 1 2 3 4 5
cohort samples 694 | 716 | 702 | 718 | 712
Cms subjects 71 63 64 71 61
min samples/subject 2 2 2 2 2
max samples/subject | 20 24 24 24 24
cohort samples 694 | 716 | 702 | 718 | 712
Cfs subjects 22 20 21 21 19
min samples/subject 22 32 28 26 32
max samples/subject | 44 44 42 40 42

TABLE XI
MEAN EERS OF THE 5-FOLD EXPERIMENTS ON LAB FACE
VERIFICATION WITH TWO DIFFERENT COHORT SETS

Feature | Query Czero Cms Cfs
, Qgood | 0.1123 | 0.0607 | 0.0618
Gabor | Spad | 0.2867 | 02240 | 02273
LBP Qgood | 0.0746 | 0.0471 | 0.0430
Qbad | 03185 | 0.2348 | 0.2337

D. How Many Subjects Should be Included in the Cohort Set?

The answer to the last question proposed in the intro-
duction, a set of experiments is performed on the FRGC
ver2.0 database. Given the results obtained from the previous
experiments, only good quality cohort samples are employed
for the cohort normalization, and two cohort sets are built.
The first cohort set contains as many subjects as possible,
each subject with the fewest possible samples. The second
cohort set contains the fewest possible subjects, each subject
with as many samples as possible. The term “Cms” refers to
the first cohort set and “Cfs” to the second cohort set. The
same 5 folds, as in the former experiments performed on the
FRGC ver2.0 database, are used. The 6 resulting combinations
of target, query and cohort samples are listed in Table IX.
The overall testing configurations and experimental settings
are the same described in section V-C.1, the only difference
lies in the composition of the cohort sets. The configuration of
the cohort sets for the 5 folds is shown in Table X. For each
fold, “Cms” and “Cfs” are composed of the same number of
face samples.

The results obtained in the experiments are summarised
in Table XI. As it can be noticed, when matching either
good or bad quality query samples, the cohort normalization
performed using either “Cms” and “Cfs” achieves almost
the same performance. Therefore, if the total number of
sample faces is kept unchanged, no significant difference in
performance is registered by changing the number of subjects
in the cohort dataset.
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VI. CONCLUSION

The recognition of faces under unconstrained conditions has
been addressed. In order to facilitate the pairwise face match-
ing a picture-specific cohort score normalization approach has
been proposed. The adoption of a subject-specifc normaliza-
tion process, which is naturally tailored on the unique features
of the subject’s face, allowed to achieve better performance
over traditional blind normalization processes.

This paper particularly provided a better understanding
of discriminative cohort behavior addressing the following
questions:

1) How much discriminative information is contained in
the cohort samples alone?

2) How do the choice and the size of the cohort set affect
the normalization performance?

3) What is the result of employing cohort samples of
different quality?

4) Should a cohort set contain as many as possible subjects
(each subject with the fewest possible samples) or as
few as possible subjects (each subject with the utmost
possible number of samples)?

It has been shown that the cohort information alone embeds
a discrimination power which is just marginally worse than
the raw matching score. When this information is prop-
erly extracted (with a polynomial regression), and appropri-
ately combined with the raw matching scores (with logistic
regression), an improvement in the face pairing is almost
always achieved over the corresponding baseline system. This
approach has been validated on the LFW database, achieving
performance comparable with the current state of the art.

Concerning the quality and size of the cohort sample set,
it has been shown that a larger cohort set size provides
more stable and often better results up to a limit, when the
performance saturates and even slightly degrades. On the other
hand, cohort samples with different quality indeed produce
different cohort normalization performance. Generally, when
matching face images captured in a controlled environment,
cohort samples of good quality (captured under controlled
conditions) allow to achieve much better performance than
bad quality (captured under uncontrolled conditions) cohort
samples. However, whenever matching face samples captured
in uncontrolled conditions, such as for the images in the
Labeled Faces in the Wild dataset, good quality cohort samples
produce much worse performance than bad quality samples.
In contrast, using “wild”, uncontrolled cohort samples allows
to achieve the best performance.

Regarding the number of subjects included in the cohort
dataset, it has been shown that, if the image samples in
the cohort set are all captured under controlled conditions,
the number of subjects in the set has a marginal impact
on the verification performance. The experimental results
provided, as well as the conclusions drawn, may provide
researchers with useful suggestions and hints for designing a
suitable cohort/background set for score normalization in face
recognition.

Whenever a biometric system operates under challenging
conditions, cohort normalization can improve robustness and
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recognition accuracy. However, to achieve a thorough under-
standing of the background dataset behavior, more research
efforts are required by using different background-based
approaches. The regression-based algorithm could be boot-
strapped to improve the computational speed. Even though
the described subject-specific cohort normalization has been
developed for single image holistic face matching, it can
be further extended to still-to-video or video-to-video face
recognition. Further research can be devoted to extended
the proposed method to component-based face recognition to
augment robustness to facial occlusions. The proposed method
could be also extended to address other biometric modalities
by exploiting modality-specific cohort datasets.
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