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Abstract—Biometrics is the technique of automatically recognizing individuals based on their biological or behavioral characteristics.

Various biometric traits have been introduced and widely investigated, including fingerprint, iris, face, voice, palmprint, gait and so forth.

Apart from identity, biometric data may convey various other personal information, covering affect, age, gender, race, accent,

handedness, height, weight, etc. Among these, analysis of demographics (age, gender, and race) has received tremendous attention

owing to its wide real-world applications, with significant efforts devoted and great progress achieved. This survey first presents

biometric demographic analysis from the standpoint of human perception, then provides a comprehensive overview of state-of-the-art

advances in automated estimation from both academia and industry. Despite these advances, a number of challenging issues continue

to inhibit its full potential. We second discuss these open problems, and finally provide an outlook into the future of this very active field

of research by sharing some promising opportunities.

Index Terms—Demographic estimation, biometrics, human age estimation, gender classification, race recognition
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1 INTRODUCTION

BIOMETRICS is the technique of automatically recognizing
individuals based on their biological or behavioral char-

acteristics [1]. Since the pioneering work on automated bio-
metric recognition using fingerprint proposed by Mitchell
Trauring in 1963 [2], significant progress has been achieved
in this field [3]. Diverse biometric traits have been intro-
duced and widely investigated, including fingerprint, iris,
face, voice, palmprint, gait and so on. Along with the tech-
nological evolution, more and more practical applications
have benefited from biometrics, covering border and access
control, unique identification for residents, video surveil-
lance, forensics, etc.

Biometric traits are typically exploited for human iden-
tity recognition, through identity-related information
extraction. However, there is much more than identity in
biometric data. For example, humans can deduce from
someone’s face photo a wide range of social information,
including approximate age, gender, race and affect. The
voice of a person can reflect his/her age, gender, affect, and
accent, while handwriting can be used to estimate human
age, gender, and handedness.

This is also demonstrated by diverse researchwork in per-
ception, cognition, psychology, neuroscience and psycho-
physics. In 1966, Ptacek et al. showed that listeners were able
to differentiate voices of younger adults from aged speakers
with impressive accuracy [4]. Bruce et al. explored the per-
ceptual basis of human ability to categorize the sex of faces
and found people were remarkably accurate at this task [5].
In this work, we are interested in the analysis of demo-
graphics from biometric data. Demography is the study of
population dynamics. It encompasses the study of size,
structure and distribution of populations, and how popula-
tions change over time due to births, deaths, migration, and
aging. Demographic analysis can relate to whole societies or
to smaller groups defined by criteria such as education, reli-
gion, or ethnicity. As illustrated in Fig. 1, we focus on human
age, gender and race estimation from biometric data.

Biometric demographic analysis has very diverse practical
applications. Targeted advertising is a typical one. If the
knowledge of clients (e.g., age and gender) can be automati-
cally estimated by either their faces or voice, customized
products and services can be recommended (e.g., makeup to
females and toys to children). Human-computer interaction
(HCI) is another widely explored application, where auto-
matic demographic analysis can make the interaction more
socially competent. Owing to these emerging applications,
there has been an increasing interest in this topic, resulting in
a large number of attempts and initiatives in both scientific
and industrial communities: collection of specific biometric
databases [6], [7], [8], [9], [10]; numerous research work on
demographic estimation from various biometric traits [11],
[12], [13], [14]; commercial products (How-Old.net from
Microsoft,1 face attribute prediction from Face++2); demo-
graphic specific workshops and special issues in pattern rec-
ognition, signal processing and computer vision conferences
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and journals [15], [16]; organization of competitions [17], [18].
Thanks to these attempts, significant progress has been
achieved. To gain a clear picture of the current panorama, we
aim to, in this paper, keep track of these attempts and summa-
rize the achievements.

Regarding biometric demographic estimation, there have
been several survey papers in the literature. In [11], Fu et al.
surveyed state-of-the-art techniques in face-based age syn-
thesis and estimation prior to 2010. For gender recognition,
Ng et al. presented a survey on computer vision-based
methods, focusing on face and gait [14]. In 2014, Fu et al.
provided a comprehensive review of face-based race esti-
mation approaches [13]. Very recently, Han et al. offered
a brief summary of existing demographic estimation
methods from human face [12]. Notice that all these over-
views center on either one demographic attribute or one
biometric trait. The survey presented by Dantcheva et al.
instead covers all soft biometrics (demographic, anthro-
pometric, medical, material and behavioral attributes)
from diverse biometric traits [19]. Another similar survey
was organized by Nixon et al. [20], where some soft bio-
metrics (demographic, clothing, and color attributes) are
derived mainly from face and gait.

In spite of these efforts, there is no survey paper provid-
ing points of view about human perception for all the three
tasks using various modalities. Second, no work presents a
chain of chronological milestones related to the evolution of
automated analysis. Third, for evaluating different systems,
most surveys simply list estimation results (e.g., accuracy or
error rate) in tabular form. Note that performance is a result
of the algorithm as well as quality of biometric samples.
Therefore, it is of significance to present details of both algo-
rithm and data when talking about the state of the art. To
address these issues, we organize this survey, which is
more comprehensive, we believe, about covering the space
of biometric modalities and demographic attributes than
previous ones.

The rest of the paper is organized as follows: Section 2
presents some opinions about human demographic per-
ception together with some popular applications. The his-
torical development of automatic estimation is drawn in
Section 3. Section 4 provides a comprehensive overview
of existing techniques. Section 5 is devoted to the state-of-
the-art performance. Several challenges faced by today’s
technology are listed in Section 6, followed by some
future directions in Section 7. Finally, we conclude the
survey in Section 8.

2 BACKGROUND

In this section, we first provide some background work
related to biometrics. Then, some interesting points about
biometric demographic analysis will be presented from the
view of human perception. A couple of typical applications
will be further listed.

2.1 Biometrics

Biometrics is a technique developed for person recognition
with reliability. Traditionally, people use token-based
mechanisms (e.g., passport) and knowledge-based schemes
(e.g., password) for verifying the identity. Compared with
these traditional approaches, biometric systems exhibit
more reliability owing to the distinctiveness, permanence,
universality and invulnerability not a hundred percent sat-
isfied by biometric modalities [1], which are often catego-
rized as biological and behavioral traits. Biological traits
include, but are not limited to fingerprint, iris, face, palm-
print, Deoxribonucleic Acid (DNA), hand vein, palm vein,
finger vein, periocular, ear, hand geometry, retina, sclera,
Electrocardiograph (ECG), Electroencephalograph (EEG)
and odour/scent. Behavioral traits are related to the pattern
of human behavior, including voice, gait, handwriting, sig-
nature, typing rhythm, etc. In Fig. 2, we show diverse body
traits that have been deployed in biometric systems or pro-
posed in the literature.

Driven by explosively emerging real-world applica-
tions in access control, resident identification, surveillance
and forensics, continuous efforts have been dedicated to
tackle various problems involved in a biometric system,
covering employing or designing application specific sen-
sors to collect data, extracting representative features,
developing robust matching algorithms, exploiting multi-
modal fusion strategies [21], investigating soft biometrics
[22] and developing effective anti-spoofing approaches
[23]. The evolution of biometrics is an on-going process.
Nowadays biometric systems can achieve satisfactory per-
formance in many applications, especially in controlled
environments. In [3], Jain et al. give a clear depiction of
its current state of the art.

2.2 Human Perception on Biometric Demographic
Estimation

Estimating demographics from body traits is inherently a
multidisciplinary task involving not merely fields of com-
puter vision, pattern recognition and machine learning
but also areas of perception, psychology, anthropometry,
neuroscience and psychophysics. In this section, we pro-
vide some analytical understanding of human demo-
graphic perception.

2.2.1 Age Perception

Age estimation is the task of determining from various body
traits the approximate age group (year range) or the scalar
age value (year) for an individual. Human aging process is
a slow, relentless, uncontrollable and irreversible process.
Different people have different aging processes, which can
be affected by both internal and external factors, including
living style, working environment, health condition, etc.

Fig. 1. Demographic attributes from biometric data (image source:
Google Images).
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For example, in [25], Stone stated that facial aging can be
accelerated by smoking, genetic predisposition, emotional
stress, disease processes, dramatic changes in weight and
exposure to extreme climates. Despite of the uncontrollabil-
ity and personalization, human aging still has some general
changes and shares some resemblances.

Human face provides usmuch informationwhich is neces-
sary and valuable to social intercourse. From the biological or
anthropometric point of view, there are roughly two stages
involved in facial aging which show large differences in facial
growth and aging forms [26]. During the early development,
frombirth to adulthood, the greatest change is the craniofacial
growth (i.e., shape change) [27]. Overall, the face size is
getting larger gradually. The facial skin relatively does not
change much. During adult aging, from adulthood to old age,
the most perceptible change becomes skin aging (i.e., texture
change). The skin becomes thinner, darker, less elastic, and
more leathery.Wrinkles and blemishes gradually appear.

Voice is also a trait changing obviously throughout life.
Advancing age produces physiologic changes thatmight alter
the voice. These changes occur from birth to death and
involve all parts of the vocal tract. During the childhood, the
most significant change in voice results from the rapid growth
of larynx, vocal folds and surrounding support structures.
Throughout adult life, the mean fundamental frequency (F0)
of females drops steadily from � 225 Hz in 20 � 29 years old
to� 195Hz in 80 � 90 years old [28]. Formales, F0 drops until
roughly the fifth decade, after which it rises gradually. Jitter is
a measure of reflecting the periodicity of vocal fold vibration.
In [29], Linville et al. reported higher mean jitter values in
elderly than younger women. Significant jitter differences
were also found between young and elderlymen [30].

Another trait varying across ages is human gait. There
have been studies revealing significant changes in gait pat-
terns associated with the advancing age. In [31], [32], it was
reported that gait speed decreased with increased age.
Menz et al. found that elder subjects exhibited more conser-
vative gait patterns [33], characterised by reduced velocity,
shorter step length and increased step timing variability.
These differences are particularly pronounced when walk-
ing on irregular surfaces.

2.2.2 Gender Perception

Gender prediction aims to determine if a person is a male or
a female. Among various modalities, face and voice are
probably the most widely investigated. Using photographs
of adult faces with hair concealed, humans can achieve an
accuracy as good as 96 percent in determining the gender
[34]. Bruce et al. found the human ability to perform this cat-
egorization might be multiply determined by 2D, 3D, tex-
tural cues, and their interrelationships [5]. For gender from
voice, Titze reported that adult males had pitches about an
octave lower than adult females [35]. In [36], it was shown
that listeners were able to correctly identify speakers’ sex 88
percent of the time. Lass et al. indicated that F0 appeared to
be a more important acoustic cue for sex identification than
resonance characteristics [37].

Gait pattern exhibits also significant gender differences.
Body sway, waist-hip ratio, and shoulder-hip ratio all are
indicative of a walker’s gender [38]. For example, males tend
to swing their shoulders more than their hips, whereas
females tend to walk in an opposite way. In [39], Kozlowski
et al. showed that the sex of human walkers can be recog-
nized without familiarity cues from displays of point-light
sources mounted on major joints. Apart from using gait pat-
terns, we human beings can discriminate genders when only
static human body is available. In [40], Sheldon et al. qualita-
tively defined three components of body shapes, including
endomorphy (soft and roundedness), mesomorphy (harded-
ness and muscularity), and ectomorphic (linearity and skin-
niness). In [41], Mu~noz-Cach�on et al. found that males
displayed higher rates of mesomorphy, whereas endomor-
phy or relative body fat tended to be higher among females.

Handwriting is another gender informative trait. In [42],
humans were asked to determine the writer’s gender from a
given handwriting document. An accuracy of about 68 per-
cent was reported. Hand geometry shows also differences
between males and females. In [43], Agnihotri et al. found
that the average hand breadth and length were about 1 and
1.5 cm correspondingly greater in males than females.

2.2.3 Race Perception

Race is used to categorize humans into large and distinct
populations or groups by heritable, phenotypic characteris-
tics, geographic ancestry, physical appearance, and social
status. Ethnicity is also commonly used to represent this cat-
egorization. Nevertheless, race and ethnicity are related to
biological and sociological factors respectively. In this
paper, we do not make a difference between them.

Race categorization is the task of predicting the racial
group to which a person belongs. In [44], Hosoi et al. sum-
marized some physical characteristics of three common
racial groups, i.e., Asian (Mongoloid), European (Cauca-
soid), and African (Negroid). Asians generally have straight
or slightly wavy hair and yellowish skin, whereas European
people tend to have wavy or curly hair and light skin. For
Africans, the skin is generally dark. Their hair usually has
tight curls or heavy waves. Face is a popular trait in deter-
mining ethnicity with critical characteristics, including eyes,
nose, lip, and facial skin [44]. For example, Asian people
generally have narrow eyes with more single-edged eyelids,
while Europeans generally have eyes with double eyelids.

Fig. 2. Biological and behavioral body traits used for person recognition
(image source: Google Images).

334 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 2, FEBRUARY 2018



Iris is also race informative. We illustrate in Fig. 3, the
right and left iris images of one European and one African
subjects from the UBIRIS.v2 database [45]. European iris
usually exhibits bright and colorful appearance with clear
texture. In contrast, African iris shows dark or brown
appearance and it is impossible to obtain detailed texture
with visible light.

2.3 Real-World Applications

Automated demographic analysis has many popular real-
world applications. Here, we list several typical ones.

2.3.1 Human-Computer Interaction

More sophisticated HCI systems can be built if users’ demo-
graphics can be collected automatically. Such systems are
smarter and interact more naturally with humans. For
instance, a communicative robotic can interact with users
from different age/gender/race groups with particular
preferences.

2.3.2 Security Control and Surveillance Monitoring

There are many security related situations where surveil-
lance monitoring might play a vital role. A smart surveil-
lance system with age estimation functionality can stop
children from purchasing tobacco products from vending
machines and entering bars or wine shops. By integrating
gender estimation, such systems can restrict some areas to
one gender only.

2.3.3 Multimedia Retrieval

For multimedia retrieval, demographic estimation can be
used to locate specific individuals in video streams or
crowd images. For example, when looking for photos of a
specific person, estimating age as a preprocessing step will
reduce the amount of search required.

2.3.4 Biometrics

Acting as soft biometrics, demographic attributes can be
used for helping hard biometrics to further accelerate the
matching process and improve the matching performance.
For example, integrated with gender recognition, the time
for searching the enrollment database can be reduced by
half for an identification system.

2.3.5 Targeted Advertising

Targeted advertising is used to display advertisements
which might interest consumers by simply analyzing which
age group or gender they belong to. For example, the bill-
board may choose to show ads of cars when a male is
detected, or dresses in the case of females.

3 EVOLUTION OF AUTOMATIC DEMOGRAPHIC

ESTIMATION FROM BIOMETRIC DATA

Since the work of Childers et al. in 1988 on automatically rec-
ognizing speakers’ gender by voice [46], biometric demo-
graphic analysis has promoted a large amount of work on
both developing automated algorithms and implementing
practical systems. This has been specially the case for some
of the most deployed modalities such as face, voice and gait.
To get a clear picture of the progress, in the following, we list
a chain of chronological milestones related to the evolution
of each of the three demographic tasks. We are aware that
other approaches merit being covered, however, due to
space restrictions, we center only on those that, from our
point of view, can better help the reader see the progress.

3.1 Historical Development of Automatic Age
Estimation

The pioneering work on automated age estimation was
started in the mid-1990s by Kwon and Lobo [48]. In their
work, age categorization (babies, young adults and senior
adults) was performed based on analysis of skin wrinkles
and craniofacial changes. In Fig. 4, we list some major
milestones.

In 2001, Davis investigated gait for visual discrimination
of children from adults using stride-based properties [49].
Minematsu et al. instead derived age from voice using
acoustic and prosodic features [50]. The Active Appearance
Model (AAM) popularized by Lanitis et al. in 2002 consid-
ered both anthropometry/shape and texture/wrinkle of
human face [51]. Other commonly used facial appearance
models includeHaar-like features [52], Local Binary Patterns
(LBP) [53], Biologically Inspired Features (BIF) [57], etc. In
[138], Metze et al. initialized an evaluation of different
approaches on age grouping from telephony channel data.
For describing human age, Yan et al. believe it makes more
sense to express age as an interval than a fixed value [139].
Based on this, they learned an auto-structured regressor
from uncertain nonnegative labels with face modality. For
using voice, Bocklet et al. proposed to compute Gaussian
Mixture Model (GMM) supervectors for each speaker [60].
In [58], [59],manifold embedding techniqueswere employed
to learn a low-dimensional aging trend from face images.

In 2009, Gallagher et al. proposed a framework for facial
age estimation by exploiting contextual features from group
photos [239]. To address the low comparability of different
paralinguistic algorithms developed for demographic esti-
mation, Schuller et al. organized the first Challenge on Para-
linguistics held at INTERSPEECH 2010 [17]. Towards using
gait, Lu et al. computed Gabor features [63] from Gait
Energy Image (GEI) [64] which is one of the most successful
gait representations [155]. In 2011, an ordinal hyperplane
ranking algorithm was presented for facial age estimation
[65]. The first age estimation app for mobile marketing was
launched by AppTech in 2012. It was developed for
Android phones and can recognize the approximate age of
a person from his/her face photo. In [212], Geng et al. esti-
mated human age by regarding each face image as an
instance associated with an age label distribution. In recent
years, quite a few providers of biometric/face recognition
technology have integrated age estimation module into

Fig. 3. Right and left iris images of one European subject and one African
subject from the UBIRIS.v2 database [45].
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their face recognition systems. Examples include Cognitec’s
FaceVACS-VideoScan3 and Neurotechnology’s VeriLook
SDK.4

Motivated by the great success of deep neural networks
in computer vision, language modelling and speech analy-
sis, Yi et al. developed deep face models for age estimation
[67]. In 2014, the National Institute of Standards and Tech-
nology (NIST) performed a large scale empirical evaluation
of facial age estimation algorithms [66]. In 2015, Microsoft
announced the How-Old.net website, on which users can
upload their face photos and get estimated ages. To test cur-
rent algorithms using “in the wild” faces (i.e., photos col-
lected from web), ChaLearn organized the Looking At
People (LAP) Challenge, focusing on apparent age estima-
tion with age labels annotated by human assessors rather
than real chronological ones [18]. Towards using human
body, Deng et al. extracted color and texture features from
pedestrian image [69].

3.2 Historical Development of Automatic Gender
Estimation

Some major milestones in history of gender prediction are
summarized in Fig. 5. In 1988, Childers et al. pioneered
speech-based gender prediction using acoustic parameters
of vowels and fricatives [46]. The face work started after
two years with EMPATH and SEXNET [70], [71], where
neural networks were applied directly to intensity features.
Brunelli et al. instead extracted geometrical features from
frontal faces [106]. In 1996, Parris et al. designed male and
female speaker independent Hidden Markov Models
(HMM) to model the spectral envelope [72]. Towards using

face, O’Toole et al. investigated 3D head structure [74]. In
2000, Support Vector Machine (SVM) was employed to dis-
tinguish male from female faces [75]. The first work on gen-
der detection from gait was presented by Lee et al, where
segmented silhouette features were extracted across a gait
sequence [76].

In 2003, Wu et al. extracted Haar-like features [77] to
infer gender from face. In [79], Yoo et al. computed a
model-based gait signature using joint angles and body
points. The fingerprint work was pioneered by Badawi et al.
in 2006 [81]. After this, Thomas et al. presented an iris
approach [82]. Instead of using dynamic gait patterns, Cao
et al. investigated pedestrian images to infer gender [83]. In
[84], Average Gait Image (AGI) was computed from gait for
gender recognition. In 2009, Kumar et al. designed a set of
attribute classifiers using “in the wild” faces, with gender
cue covered [85].

In [87], Wuhrer et al. investigated 3D human body
shapes obtained by a range scanner. The Paralinguistic
Challenge 2010 included also gender prediction [17]. In
2012, Neurotechnology implemented gender detection in
their VeriLook SDK (a biometric SDK for face identifica-
tion). Nuance,5 a provider of speech recognition and lan-
guage technology, announced a new mobile ad format,
Voice Ads. This technology can distinguish speakers’
gender and thus provide right ads. In 2013, Hassa€ıne
et al. organized the first competition on gender predic-
tion from handwriting documents [89]. Along with the
popularity of deep learning, Levi et al. and Zhu et al.
employed deep Convolutional Neural Networks (CNN)
to derive gender from face and pedestrian images in
[90], [91], respectively.

Fig. 5. Major milestones in the history of automatic gender estimation from biometric data.

Fig. 4. Major milestones in the history of automatic age estimation from biometric data.

3. www.cognitec.com
4. www.neurotechnology.com 5. www.nuance.com/index.htm
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3.3 Historical Development of Automatic Race
Estimation

Fig. 6 illustrates the evolution of race estimation. In 1998,
Gutta et al. presented the pioneering work on recognizing
race using face [92]. Similar to age and gender prediction,
for facial race categorization, appearance models are popu-
lar representations, e.g., Gabor and Haar wavelets used in
[93], [94]. In [95], Lu et al. applied Linear Discriminant Anal-
ysis (LDA) to face images of different scales for race detec-
tion. The first work on using iris was from Qiu et al. [96]. In
2006, range modality was investigated for race from face
[80]. Kumar et al. instead downloaded face images from
internet, labeled them with attributes such as gender, race,
age, and hair color [97]. Race from these “in the wild” faces
was then investigated.

In [98], Tariq et al. categorized racial groups by shape
context matching of silhouetted face profiles. Hadid et al.
instead extracted spatiotemporal features from face videos
[99]. As presented in Section 2.2.3, skin tones are useful fea-
tures for rough race classification. In [100], Xie et al. pre-
sented one such approach using facial color. In 2013,
Cognitec released FaceVACS-VideoScan, the first technol-
ogy to analyze the count, flow and demographics of people
visible in video streams. Towards using iris, Sun et al.
developed Hierarchical Visual Codebook (HVC) to encode
texture primitives of iris images for race grouping [101]. In
2015, Liu et al. proposed a deep learning framework for pre-
dicting face attributes “in the wild” [102], where race was
among the attributes.

4 DEMOGRAPHIC ESTIMATION FROM BIOMETRIC

DATA

In Fig. 7, an unified framework of typical biometric demo-
graphic systems is given. There are four main components:
data acquisition, preprocessing, feature extraction, and demo-
graphic estimation. It should be noted that there are also sys-
tems which implement the last two components together.

These systems like deep CNN architectures employed in [67],
[90], [103], [216], [218], [219] are generally called end-to-end
systems. In this section, we briefly present data acquisition
and preprocessing components, while detail the existing
work on feature extraction and estimation algorithms.

4.1 Biometric Data Acquisition

Biometric data can be captured directly from diverse sen-
sors (2D camera, 3D scanner, video camera, thermal sensor,
near infrared camera, microphone, etc.). To acquire high
quality data, quite a few capturing devices have been devel-
oped. Early sensors were generally cumbersome and expen-
sive. Moreover, they required a high degree of cooperativity
from users. During the evolution, acquisition systems
become more compact, affordable and friendly, making it
possible to embed them in laptops, mobile phones and wear-
able devices (e.g., Google glass6). In [3], Jain et al. listedmajor
turning points in the development of fingerprint, iris, and
face capturing devices. Apart from directly acquiring data
from biometric sensors, in recent years, researchers have
started to collect data from the internet and social media.
Social networks such as Facebook7 and Twitter8 have gener-
ated an unprecedented volume of photos and videos. For
example, face images in the LFW database [24] and videos
from Youtube9 Faces database [104] were all collected from
the internet. TV programs, movies and video games are also
sources of biometric data. In Fig. 8, we illustrate the richness
of biometric data in our society.

4.2 Preprocessing

Subsequent to data acquisition, preprocessing follows. Due
to variability in the acquisition environment (e.g., under dif-
ferent illumination conditions) and the interaction with
acquisition devices (e.g., different head poses), the captured
data usually appears very different. Meanwhile, the data
might contain noisy information. Hence, preprocessing
aims to detect/segment the valid data, normalize it, and fur-
ther enhance the quality. Face detection and alignment are
important procedures in face systems. For iris, localization,
segmentation and normalization are generally performed.
Normalization is used to unfold annular iris images to rect-
angle images of the same size. In voice systems, de-noising
is usually performed for enhancement. If the speech is from
multiple speakers, separation will then be essential to obtain

Fig. 6. Major milestones in the history of automatic race recognition from
biometric data.

Fig. 7. Four main stages involved in typical biometric demographic esti-
mation systems (image source: Google Images).

Fig. 8. Richness of biometric data in our society (image source: Google
Images).

6. www.google.com/glass/start
7. www.facebook.com
8. twitter.com
9. www.youtube.com
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each speaker’s signal. Good quality fingerprint images are
not always easy to be acquired, which might be corrupted
or degraded due to skin variation. Hence, enhancement is
necessary, generally involving three procedures: normaliza-
tion (e.g., histogram equalization), binarization and thin-
ning. Common gait preprocessing includes background
substraction and silhouette normalization.

4.3 Feature Extraction

In this section, we provide detailed literature review on
demographic informative representations from different
biometric traits.

4.3.1 Representations from Face

Common facial representations for age, gender, and race
recognition include geometric/anthropometric models,
holistic models based on subspace/manifold learning,
appearance models, 3D models/range modality, and deep
models. Early demographic work usually adopted geomet-
ric/anthropometric models [48], [105], [106], [107], which
are based on dimensions of the whole face/salient features
(e.g., eyes, nose, mouth, etc.) and distance ratios measured
from facial landmarks. Notice that only frontal faces can
be used to compute such representations, which are sensi-
tive to head pose variations. Another disadvantage is these
models consider only facial geometry while ignore texture
information. As a result, they are not appropriate for
age estimation of adults.

Holistic models [58], [59], [108], [109], [110], [111] repre-
sent each face image as a single high-dimensional vector by
concatenating gray values of all its pixels. Subspace/mani-
fold learning algorithms are then employed to learn a low-
dimensional representation, which can well capture the
global information of the whole face. Holistic models are
generally simple, efficient, and easy to be implemented. In
contrast, appearance models are more complicated, and
require more computational resource. Nevertheless, by con-
sidering both shape and texture, they are more robust to
facial appearance variations. AAM [112], [113], [114], [115],
Haar-like features [52], [77], LBP [53], [54], [55], [56], Gabor
[44], [105], [116], BIF [12], [57], Discrete Cosine Transform
(DCT) [117], [118], [195], and local directional pattern [119]
all belong to appearance models.

Note that all the above representations are based on 2D
RGB or intensity images. There are also approaches exploit-
ing 3D faces. Examples include gender detection in [120],
[121], [122], [123], [124] and ethnicity categorization in [125],
[126], [127], [128]. By exploring the surface shape, 3D
approaches show insensitivity to viewpoint and illumina-
tion variations. Along with the success of deep learning
techniques in diverse areas and the availability of large
number of training face images, researchers have turned
their attention to learning facial representations by deep
neural networks in recent years. These deep learned fea-
tures [220], [223], [224] are more representative and discrim-
inative for demographic tasks than traditional handcrafted
and data-driven features. Training such models yet usually
requires high computational cost.

Apart from the five common representations, in [129],
[130], [131], [132], facial dynamics from video data were

investigated for demographic estimation. In [88], [98],
silhouetted face profiles were proved to be useful to gender
and race classification. Facial color-based features are also
race informative, which have been investigated in [100], [133].
Chen et al. instead explored face images obtained in near-
infrared and thermal spectra for gender prediction [134].

4.3.2 Representations from Voice

Investigating paralinguistic information conveyed in speech
signals offers a chance to determine a speaker’s age and
gender. In order to automatically recognize them, most
researchers examine how the speaker said by extracting
acoustic/prosodic features. Among these features, Linear
Prediction Cepstral Coefficients (LPCC), Mel Frequency
Cepstral Coefficients (MFCC) and Perceptual Linear Predic-
tion (PLP) coefficients are the most popular ones [46], [50],
[60], [72], [73], [78], [135], [136]. As stated in Section 2.2.2,
females generally have higher pitch than males. In [72], [73],
[135], authors verified the effectiveness of pitch on gender
prediction. Shafran et al. instead employed pitch for age
grouping [78]. Perturbation features like jitter and shimmer
are also popular for demographic analysis [137], [138],
[140]. Jitter is defined as micro-variations of F0, while shim-
mer represents micro-variations of amplitude. Other com-
mon acoustic/prosodic features include harmonicity (e.g.,
harmonics-to-noise ratio and noise-to-harmonics) [140],
energy [135], [140], formants [46], [47], modulation ceps-
trum [141], and speech rate [50]. For demographic analysis
using voice, generally, using single feature is hard to
achieve satisfactory performance. Thus, most existing
approaches employed multiple features.

4.3.3 Representations from Gait

Human gait representations for age and gender prediction
can be roughly divided into three categories: point-light,
model-based and appearance-based approaches. Early
work generally adopted point-light representations from
the aspect of biological motion, where a set of reflective
markers are attached on the body. Locomotion features are
then extracted from point-light trajectories. Examples
include the work of Davis [49] and Begg et al. [142] for
binary age group classification and the work of Davis et al.
[143] and Troje [144] for gender prediction. One disadvan-
tage of point-light is its obtrusiveness, which obliges users’
cooperation. Model-based methods instead consider both
shape and dynamics of human body. They represent body
parts as different shapes, e.g., the stick model [79] and the
ellipse model [76], [145], [146], [147], and then extract
parameters of these shapes as gait features. Without fitting
a model, appearance-based methods compute the repre-
sentation directly from gait silhouette, i.e., using the
whole motion pattern of human body. Widely used GEI
[86], [148], [149], AGI [84], [150], and common signal
transformation methods (e.g., Radon [151], [152], Fourier
[61], [153] and wavelet transformations [154], [155]) all
belong to this category. Appearance approaches are com-
putationally efficient and work well with low-resolution
gait sequences. In contrast, model-based methods usually
require high-resolution gait data to accurately fit the
physical model and thus demand for relatively high
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computational cost. However, they can well handle occlu-
sion, noise, scale and rotation issues.

For gender from static human body, texture features are
popular pedestrian representations, covering Histograms of
Oriented Gradient (HOG) [83], [156], [157], [161], BIF [162],
Gabor and Schmid [69], [163], LBP [161], etc. These features
can well capture the local shape information with some
invariance to translation and rotation variations. To infer
the gender, humans use not merely body shape and hair-
style, but also additional cues such as clothes and accesso-
ries. Among these cues, clothing color plays an important
role. In order to capture the color information, different
color spaces have been exploited [69], [156], [161], [163],
e.g., RGB, HSV, and YCbCr. Note that color alone is not dis-
criminative enough for gender prediction from pedestrian.
It is generally combined with texture features. Instead of
exploiting 2D human body images, Wuhrer et al. and Tang
et al. investigated 3D human body shapes [87], [164]. Com-
pared with 2D models, 3D models show more robustness to
variations of light and posture. Along with the success of
deep learning, Zhu et al. proposed a multi-label deep CNN
to predict gender and other attributes together in an unified
framework from unconstrained pedestrian images [91].

For age from static human body, there is hardly any
existing work. An interesting one is from Deng et al. [69],
who performed age group classification from unconstrained
pedestrian images using texture and color features.

4.3.4 Representations from Fingerprint

Fingerprint is a gender informative trait. Early work on this
task generally extracted physical features [81], [165], includ-
ing ridge count, pattern type concordance, ridge count
asymmetry, Ridge Thickness to Valley Thickness Ratio
(RTVTR), white line count, ridge density, and ridge width.
As found in [81], female fingerprint is generally character-
ized by high RTVTR and high count of white lines (see
Fig. 9), while male fingerprints generally have lower RTVTR
and no or few white lines. Apart from physical features, tex-
ture features are also studied. In [170], discrete wavelet
transform was employed to extract frequency features.
Li et al. and Rattani et al. instead evaluated LBP and other
texture features [172], [173].

4.3.5 Representations from Iris

For race categorization from iris, researchers generally com-
pute texture features, e.g., Gabor energy [10], [96], statistics
of spot and line filters [174], [175], [176] and Scale Invariant
Feature Transform (SIFT) [101], [177]. Iris texture is also
popular for gender discrimination. For example, Tapia et al.
investigated the use of LBP in [178] and iris code in [235],
and Bansal et al. combined wavelet features and statistics
along angular and radial directions [179], [180]. In addition,

geometric features which describe iris dimension have been
also investigated in the literature [82].

4.3.6 Representations from Handwriting

Handwriting is a modality highly susceptible to biological
factors, age, and social habits. This intuition has motivated
its demographic study. By analyzing a set of micro features,
covering gradient, structural, and concavity, Tomai et al.
measured the performance of using individual characters
for demographic tasks [181]. Bandi et al. instead investi-
gated the whole handwritten document for gender and age
group classification [182], where macro features such as
slant, word gap and gray-scale threshold were examined.
Micro features are good at describing fine details at charac-
ter level, while macro features can capture more global
characteristics of writers’ individual writing habits and
styles. In [183], on-line handwriting was explored for gen-
der detection with the advantage of recording also the tem-
poral information. Their on-line features include speed,
writing direction, curvature, acceleration, etc. In the ICDAR
gender competition [89], different features have been evalu-
ated, covering curvatures, direction, tortuosities, edge-
based directional features and chain codes.

4.3.7 Representations from Other Traits

Periocular refers to the region surrounding the eye which
might or might not include the eyebrow. In the literature,
there has been work on exploiting this region for demo-
graphic analysis using local appearance features. Examples
include the work of Merkow et al. on gender classification
using LBP [184] and the work of Lyle et al. on gender and
ethnicity prediction using LBP, HOG and DCT [186]. Recog-
nizing people by their ear has recently received significant
efforts in diverse applications, especially when non-frontal
faces are available. In [88], [187], appearance features of 2D
ear were extracted for gender recognition. Lei et al. instead
investigated 3D ear [188]. For gender from hand geometry,
Amayeh et al. extracted region and boundary features from
segmented hand silhouettes [189].

4.4 Demographic Estimation

With extracted representations, the next step is to estimate
demographics. For age estimation, we can either determine
a coarse age group (e.g., children, adult, and the elderly) to
which the subject belongs or calculate his/her scalar age
value. Coarse age group categorization is a classification
problem. Various classifiers have been employed including
Artificial Neural Network (ANN) [112], [137], [182], SVM
[57], [60], [142], Adaboost [12], [53], [182], K-Nearest Neigh-
bor (KNN) [61], [155], [181], GMM [50], [135], [136], etc.
Gender and race prediction are also classification problems.
Commonly used gender classifiers include SVM [69], [76],
[86], [156], [157], [162], [163], [164], [165], [178], [179], [184],
Adaboost [77], [158], [159], [160], [161], Decision Tree (DT)
[82], Gradient Boosting Machine (GBM) [89], Bayesian clas-
sifier [166], LDA [167], [168], [169], KNN [164], [170], HMM
[78], ANN [81], [164], [185], GMM [138], [141], [183], Ran-
dom Forests (RF) [83], gaussian process classifier [171], etc.
For race, SVM [10], [44], [80], [101], decision trees [214],
Adaboost [96], and ANN [176], [186] are popular ones.

Fig. 9. Fingerprints of different genders (originally shown in [81]).
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Among various classifiers, for demographic categorization,
SVM is probably the most widely used one [190]. As a very
effective method for general purpose supervised pattern
classification, SVM finds an optimal separating hyperplane
that provides superior generalization ability especially
when working with high-dimensional data (e.g., biometric
samples) and limited training data. Adaboost is another
well-known classifier. It aggressively selects a small set of
weak learners to form a stronger classifier [191], thus signifi-
cantly boosting the performance.

For scalar age value estimation, most existing approaches
consider a regression solution where a mapping function is
learned explicitly between feature vectors and scalar age val-
ues. Support Vector Regression (SVR) is a popular regression
algorithm [57], [116], [192]. Other regressors include linear/
quadratic/cubic regression [51], ANN [193], RF [194], [220],
kernel regression [195], [202], KNN regressor [203], locally
adjusted robust regression [58], kernel partial least squares
regression [204], Gaussian Process Regression (GPR) [153],
etc. Instead of directly using regression, many systems
employ a hierarchical framework [12], [112], [116], [220],
[221], [222], which first roughly predicts an age group for the
given sample then estimates its age in the specific group.
Accordingly, both classification and regression algorithms
are utilized in such systems. As human aging is perceived dif-
ferently in different age groups, this hierarchical manner pro-
videsmore accurate results than directly regressing the age.

Unlike regression, for scalar age value estimation, rank-
ing algorithms exploit the relative order information among
age labels for rank prediction [65], [205]. This ranking
scheme works more effectively when training data is insuf-
ficient and imbalanced, since all training samples are
exploited for building each age ranker. Another favorable
property is its cost sensitivity, by investigating which, we
can well capture the correlation among age labels so that
samples with neighbouring age values share more than
those further away. For example, if a person is 15 years old,
the age label is more likely to be 14 or 16 years old than 10
or 20 years old. Thus, classifying his/her samples into dif-
ferent ages has different costs. For human facial age estima-
tion, cost sensitivity was also studied for feature selection
[206], [207] and cumulative attribute space learning [208].
Notice that the ranking scheme was explored not merely for

direct age estimation as in [65], [205] but also for facial age
subspace learning [209] and age difference investigation
[210].

Besides ranking algorithms, label distribution learning is
another effective technique for predicting scalar age value
from limited training data [212], [213], [218]. It associates
each sample with an age label distribution instead of a sin-
gle age. The label distribution covers a certain number of
age labels, representing the degree that each label describes
the sample. Consequently, each sample contributes to not
only the learning of its own age, but also the learning of its
neighbouring ages. The uncertain nonnegative labels pro-
posed in [139] and fuzzy age labels used in [211] share simi-
lar characteristics with label distribution.

4.5 Advanced Representations and Estimators

In order to find what algorithm to implement to best deter-
mine one specific attribute using one specific modality,
based on the above analysis, we suggest here some biomet-
ric representations and estimators which either are the most
widely used or achieve state-of-the-art performance. We
believe this would be useful for the interested reader who
intends to design their own demographic systems. In
Table 1, we list advanced models for face, voice, gait, finger-
print, iris, and handwriting. For other modalities, since
there are very few papers on related tasks, we do not give
any recommendation. Age and race from handwriting are
not considered likewise. Additionally, for age from face, we
work on scalar age value estimation rather than age group
classification, because most work on facial age estimation
centers on the former. When deep neural network is used as
an end-to-end architecture, it can be seen as an estimator.
Otherwise, we can use them to learn representations [220],
[223], [224], i.e., deep features.

5 STATE OF THE ART IN DEMOGRAPHIC

ESTIMATION

Demographic estimation is a rapidly evolving technology
and demographic systems are experiencing continuous
improvement in both performance and usability. In this sec-
tion, we provide a clear assessment of the state of the art,
with attention on public databases and estimation results.

TABLE 1
Advanced Biometric Representations and Estimators for Demographic Analysis

Face Voice Gait Fingerprint Iris Handwriting

Age F Deep, Appearance F Acoustic, Prosodic F Gait: Appearance F
Pedestrian: Texture, Color F

- - -

E Deep NN
Hierarchical Framework
Ranking Algorithm
Label Distribution Learning

SVM, GMM SVM - - -

Gender F Deep, Appearance F Acoustic, Prosodic F Gait: Appearance F
Pedestrian: Deep, Texture, Color F

Physical F
Texture F

Texture F Directional F
Chain Codes
Curvatures

E Deep NN, SVM, Adaboost SVM, GMM Gait: SVM
Pedestrian: Deep NN, SVM

SVM
ANN

SVM GBM

Race F Deep, Appearance F - - - Texture F -
E Deep NN, SVM, Adaboost - - - SVM -

“F”, “E”, and “NN” respectively denote “Feature”, “Estimator”, and “Neural Network”.
“-” represents there is no or little work on related tasks.
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5.1 Evaluation of Demographic Estimation
from Face

The state of the art of demographic estimation from face
varies depending on the quality/variation of the face data.
FG-NET [215] and MORPH [6] databases are two most well-
used benchmarks for age estimation. FG-NET consists of
about 1,002 high-resolution face images of 82 subjects from
an age range of 0 � 69. Face images in MORPH are orga-
nized into two albums. Album 2 (i.e., MORPH II) is avail-
able for academic purposes and contains over 55,000 images
of 13,000 subjects. Besides age, subjects’ gender and ethnic-
ity are also provided in this album. Some example images
from MORPH II are shown in Fig. 10. In [12], the
machine (BIF + Adaboost + SVM/Hierarchical Age Esti-
mator) performance was compared against human per-
formance. We list the results in Table 2. For age
estimation, the mean absolute error (MAE) in years is
used as the measure, which is defined as the average of
absolute errors between estimated age labels and ground
truth labels. Using CNN fine-tuned on a large outside
facial age dataset, Rothe et al. further achieved MAEs of
3.09 years on FG-NET and 2.68 years on MORPH II
[216]. These encouraging results might be attributed to
also good quality of face images from both databases,
which are collected in controlled conditions.

The evaluation organized by NIST in 2014 provided an
objective assessment of current automated facial age estima-
tion technology [66]. It employed over 7 million face images
from visas and law enforcement mugshots. On a subset of
6,172,395 visa images from an ethnically-homogeneous pop-
ulation spanning ages 0 � 99, the best participant (a com-
mercial system from Cognitec) obtains a MAE of 4.3 years.
On an ethnically-heterogeneous population, most partici-
pants instead report higher MAEs, which suggests that eth-
nicity has an impact on age estimation. Specifically, South
Americans tend to be overestimated in age, and Asians tend
to be underestimated. For gender impact, the evaluation
result indicates that age is more accurately estimated in
males than females, with the tendency for adult females to
be underestimated.

For age and gender from “in the wild” faces [196], [197],
[198], [199], [200], [201], Eidinger et al. offered the Adience

benchmark with face images acquired by mobile devices
and uploaded to online repositories (Flickr albums10) [7].
These real-world face photos present large variation in
appearance, lighting, head pose, resolution, quality, and
more. In Fig. 11, we illustrate some example images after in-
plane alignment. The database consists of 26,580 face
images of 2,284 subjects. Age estimation here is a eight-
group classification task with 0 � 2, 4 � 6, 8 � 12, 15 � 20,
25 � 32, 38 � 43, 48 � 53, and 60þ. The evaluation protocol
follows a 5-fold cross-validation (CV) scheme. Using
deep CNNs, Rother et al. obtained an age accuracy of
64:0� 4:2 percent [216]. The exact accuracy is though very
low, the one-off accuracy gets around 96:6� 0:9 percent,
which means the predicted label is within the neighboring
�1 groups. Similarly using deep CNNs, Levi et al. reported
a gender accuracy of 86:8� 1:4 percent on this database [90].

For apparent age from “in the wild” faces, in the Cha-
Learn LAP Challenge 2015, a dataset of 4,699 images was
provided, exhibiting large variation of pose, illumination,
expression, and quality (see Fig. 12). Each image was
labeled by at least 10 users a real number from 0 to 100 years
old. Their mean age is considered as the final apparent age.
The test set contains 1,087 images. We list in Table 3 the best
three results [217]. All the three participants trained deep
age models using diverse outside face databases. The win-
ning system reported an error rate of 0.265 [216]. These
results clearly demonstrate the superiority of deep age mod-
els over human performance. In 2016, ChaLearn organized
the second LAP Challenge [225]. The face dataset was
extended to 7,591 images, from which 1,978 images were
selected for test. The best performance with an error rate of
0.241was achieved [226].

Fig. 10. Sample images from the MORPH II face database [6].

TABLE 2
Machine and Human Performance on FG-NETand MORPH II

Face Databases from [12]

FG-NET MORPH II

Machine Human Machine Human

Age (MAE) 4:8� 6:2 4:7� 5:0 3:8� 3:3 6:3� 4:9
Gender (Accuracy) - - 97.6% 96.9%
Race (Accuracy) - - 99.1% 97.8%

race task is black versus white.

Fig. 11. Face images after in-plane alignment from the Adience
database [7].

Fig. 12. Some example images from the ChaLearn LAP Challenge 2015
apparent age dataset [18].

TABLE 3
ChaLearn LAP 2015 Final Ranking with

the Best Three Results

Rank Algorithm Error

1 CVL_ETHZ [216] 0.265
2 ICT-VIPL [218] 0.271
3 WVU_CVL [220] 0.295
4 Human Performance [18] 0.34

human performance is provide by organizers.

10. www.flickr.com
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5.2 Evaluation of Demographic Estimation
from Voice

For age and gender from voice, Schuller et al. organized the
Paralinguistics Challenge 2010 [17], [62]. The “aGender” cor-
pus with 47 hours of telephone speech in 65,364 single utter-
ances of 945 speakers served to the evaluation [9], where 175
speakers were chosen for test. For age classification, four age
groups are considered (child, young, adult and senior), while
speakers’ gender had to be determined from three groups
(child, male and female). Table 4 shows the results of several
participants. The baseline system was designed by Schuller
et al. using acoustic features with SVM [17].

In order to boost the performance, most participants com-
bined several sub-systems inwhich different features or clas-
sifiers were employed [135], [227], [228], [229], [230]. The age
winner was from Kockmann et al. [230], who made use of
utterance-based acoustic, prosodic and voice quality features
provided by organizers together with their own frame-based
acoustic features. The classification was based on GMM and
SVM. For gender classification, the winning system was
composed by six individual sub-systems trained with short
and long term acoustic & prosodic features [135]. The
authors further employed three outside corpora to incorpo-
rate more speaker variability and more diverse audio back-
ground conditions into their gendermodel, whichwas based
on GMM,MLP, and SVM. The low accuracy of age task indi-
cates age from telephone speech is a very difficult problem.

5.3 Evaluation of Demographic Estimation
from Gait

For gender from gait, the most widely used benchmark is the
CASIA B database with gait data captured from 124 subjects
(93 males and 31 females) in indoor environments [8]. It con-
tains large view variation from frontal to rear view. Some sil-
houette images of a male subject and a female subject are
shown in Fig. 13. We list in Table 5 both human andmachine
performance on this database. All the algorithms used a

subset of 31 females and 31 randomly selected males with
only profile silhouette, following 31-fold CV. As observed,
most machine algorithms achieve accuracies higher than
human observers. It should be noted that this may be
ascribed to the good quality of gait data, which is captured
from profile viewwith normal clothes andwithout any bag.

For scalar age value estimation, the USF database is a
public benchmark with biological age value available for
each subject [231]. There are a total of 1,870 gait sequences
from 122 subjects with age range 19 � 59. Each subject
presents variations in viewpoint, shoe type, walking sur-
face, carrying condition, and elapsed time. To facilitate its
use, the authors fixed one gallery subset as control, and fur-
ther created 12 probe subsets to examine the effect of differ-
ent variations. Table 6 presents MAEs of two algorithms on
the Gallery and Probe A subsets with 79 subjects. Both algo-
rithms follow the leave-one-person-out (LOPO) scheme. In
[61], Makihara et al. examined multi-view gait silhouette for
age group classification (children, adult male, adult female,
and the elderly). On a self-collected database with 168 peo-
ple (4 � 75 age range), using frequency domain features,
they obtained an accuracy of 94 percent.

For gender from static human body, existing work used
either pedestrian images or 3D human body shapes. The
MIT pedestrian database is a popular benchmark for pedes-
trian detection [233]. In [83], Cao et al. labeled 600 images
from this database as male and 288 images as female for
gender classification. In Fig. 14, we illustrate several male
and female samples from this database. Table 7 shows
results of two algorithms, both following five-fold CV. To
advance the state of the art in pedestrian attribute analy-
sis, Deng et al. introduced the PEdesTrian Attribute
(PETA) dataset [69], where both gender and age group
labels are provided. Using SVM with texture and color
features, on a test set of 7,600 images, they got a gender
accuracy of about 86.5 percent. For age recognition, four
age groups, i.e., 16 � 30, 31 � 45, 46 � 60, and 60+, are

TABLE 4
Classification Accuracies (%) of Several Participant

Algorithms in Paralinguistic Challenge 2010

Participant Age Gender

Baseline Schuller et al. [17] 48.9 81.2
Age Winner Kockmann et al. [230] 52.4 83.1
Gender Winner Meinedo et al. [135] 48.7 84.3

Fig. 13. Multi-view silhouette images of one male subject (top row) and
one female subject (bottom row) from the CASIA B gait database [8].

TABLE 5
Gender Classification Accuracies (%) on the

CASIA B Gait Database

Algorithm Accuracy

Yu et al. [86] Human Observers 95.47
Li et al. [84]a AGI + SVM 93.28
Yu et al. [86] Segmented GEI + SVM 95.97
Hu et al. [154] Gabor + HMM 96.77
Hu et al. [146] Ellipse-fit Parameters + MCRF 98.39

ais implemented in [86]; “MCRF” denotes “Mixed Conditional Random
Field”.

TABLE 6
MAEs on the USF Gait Database

Algorithm Gallery Probe A

Lu et al. [155] Gabor of GEI +
MLG +ML-KNN

5.42 5.56

Lu et al. [232] Manifold Analysis
of GEI +Multiple
Linear Regression

4.77 4.28

“MLG” denotes “Multilabel-Guided” and “ML-KNN” means “Multilabel
KNN”.
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considered. Their reported accuracies are respectively
86.8, 83.1, 80.1, and 93.8 percent.

For gender from 3D human body shapes, the CAESAR
database11 is a good benchmark [234], which includes full
body shapes of about 4,500 civilians in North America and
Europe captured by a range scanner. For each subject, 3D
locations of 73 anthropometric landmarks are provided.
Using SVM with all pairwise geodesic distances between
landmarks, Wuhrer et al. reported an accuracy of at least
93 percent on a subset of 500 males and 500 females [87].

5.4 Evaluation of Demographic Estimation
from Fingerprint

Most fingerprint-based gender approaches used self-col-
lected databases. For example, in [81], fingerprints of 1,100
males and 1,100 females were scanned from their ink prints.
On a test set of 52 males and 37 females, using RTVTR,
white line count and ridge count features together leads to
an accuracy of 87.64 percent with ANN. In [170], a database
of 3,570 fingerprints was collected with 1,980 male finger-
prints and 1,590 female ones. With KNN, a classification
rate of 88.28 percent was reported using wavelet transform
on a test of 1/3 of total fingerprints. To evaluate different
texture descriptors, Rattani et al. organized a database of
166 males and 71 females [173]. On a test set of 116 males
and 21 females, an accuracy of 80.4 percent was achieved by
using LBP and SVM.

5.5 Evaluation of Demographic Estimation from Iris

For race from iris, Lagree et al. selected 1,200 iris images
from the iris database collected by University of Notre
Dame (UND) [174]. These images belong to 60 Asian and 60
Caucasian subjects, each with five left and five right iris
images. A 10-fold CV scheme was followed. For gender
classification, Tapia et al. presented the gender-from-iris
(GFI) dataset, which contains 3,000 iris images of 750 males
and 750 females [235]. Each subject has one left iris image
and one right iris image. In Fig. 15, we show right and left
iris images of a female subject and a male subject from this
dataset. From the total 1,500 persons, 20 percent of males

and 20 percent of females are randomly selected for test.
The race and gender classification results on the two data-
sets are shown in Table 8.

5.6 Evaluation of Demographic Estimation
from Handwriting

For age and gender from handwritten documents, Bandi
et al. employed the CEDAR letter database, which consists
of more than 3,000 handwritten document images from
more than 1,000 writers [182]. Each individual provided
three samples of the same text. The test set for age classifica-
tion (under the age of 24 versus above the age of 45) con-
tains 350 documents, while there are 400 documents for
gender task. Using Adaboost, they got accuracies of 86.6
and 77.5 percent, respectively.

The dataset used in the ICDAR gender competition con-
tains a total of 475 writers’ handwritten text [89], with both
Arabic and English documents. Participants were asked to
predict the gender of 193 writers. Among various classifiers
used by participants, GBM is the most popular and achieves
also the lowest logarithmic loss. The Area Under the
receiver operator Curve (AUC) of the winning system is
87.1 percent, achieved by using GBM and a set of provided
features. The organizers further investigated the importance
of different features to gender prediction, and found edge-
based directional features, chain codes, and curvatures
obtained the best performance.

5.7 Evaluation of Demographic Estimation
from Other Traits

For gender and ethnicity from periocular, in [236], Lyle et al.
collected a set of periocular images from high-resolution
frontal face images of the FRGC database [237]. There are a
total of 2,116 samples from 404 subjects. With a five-fold CV
scheme, using LBP and SVM obtained accuracies of 96.67
percent for gender (57 percent males versus 43 percent
females) and 93.8 percent for ethnicity classification (22 per-
cent Asian versus 78 percent non-Asian). Merkow et al.

Fig. 14. Pedestrian images of male (left three) and female subjects (right
three) from the MIT pedestrian database [233].

TABLE 7
Gender Recognition Results (%) on the MIT Pedestrian Dataset

Algorithm Accuracy

Cao et al. [83] HOG + Ensemble Learning 75:0� 2:9
Guo et al. [162] BIF + PCA + SVM 80:6� 1:2

Fig. 15. Right and left iris of a female subject and a male subject from
the GFI iris dataset [235].

TABLE 8
Race and Gender Classification Accuracies (%) on the

UND and GFI Iris Datasets

Algorithm Dataset Accuracy

Race Lagree et al. [174]
(Statistics of Filter
Response + SVM)

UND 90.58

Gender Tapia et al. [235]
(Iris Code + SVM)

GFI 89.00

race classification is asian versus caucasian.

11. store.sae.org/caesar

SUN ETAL.: DEMOGRAPHIC ANALYSIS FROM BIOMETRIC DATA: ACHIEVEMENTS, CHALLENGES, AND NEW FRONTIERS 343



instead examined low-resolution periocular images col-
lected from web for gender task [184]. The database con-
tains 468 male images and 468 female images. Following
five-fold CV, they got an accuracy of 84.9 percent by using
intensity features and SVM. For gender from ear, Zhang
et al. selected 942 face profile images of 302 subjects from
the UND biometrics data sets Collection F [88], [238], with
562 male and 380 female images. Following 10-fold CV,
they achieved an accuracy of 91.78�4.66 percent by using
texture features and SVM. For gender from hand geometry,
Amayeh et al. [189] built a small dataset with 20 males and
20 females. With a leave-one-out CV scheme, an accuracy of
98 percent was reported by using Fourier descriptor and
LDA classifier.

6 OPEN PROBLEMS

As reviewed above, a great amount of work has been carried
out concerning various aspects of demographic analysis.
Comprehensive efforts have been devoted to machine esti-
mation from both academia and industry. Moreover, differ-
ent public evaluations have shown that some techniques are
able to achieve very promising performance. Nevertheless,
many systems, even commercial products, fail to accurately
estimate demographics in a number of applications. Here,
we discuss some still open issues involved in this topic.

6.1 Unconstrained Biometric Demographic
Estimation

In many biometric applications, it is not easy to impose con-
straints on how to acquire data, resulting in a large amount of
unconstrained data. Estimating demographics from such
data is far frombeing solved. One classical example of uncon-
strained sensing environment is video surveillance, where
biometric samples acquired are generally of poor quality and
low resolution, with strong illumination variation, large
pose/view changes, and occlusions. Another well-known
source is internet and social media, e.g., photos in Facebook,
videos in Youtube, diverse TV programs and movies. These
“in the wild” samples present a great variety of variations,
making it extremely hard to detect demographics. Latent fin-
gerprints in forensic applications and faces after makeup
[240] are also common challenging samples.

To well handle this problem, it is in great demand to col-
lect unconstrained data. Several such face databases have
been made publicly available in order to facilitate the study
of analyzing demographics from unconstrained face, e.g.,
Gallagher group photos [239], Adience [7], and faces in Cha-
Learn 2015 [18]. Pedestrian images are also unconstrained
samples for gender and age prediction, e.g., MIT [233] and
PETA datasets [69]. For other modalities, there is rather little
work yet on investigating unconstrained data.

6.2 Correlation Among Attributes from Single Trait

Some modalities contain information of more than one attri-
bute. For instance, face is informative for all the three attrib-
utes, while voice, gait, and handwriting convey age and
gender cues. It is unclear about how these attributes affect
each other, there is only limited work on studying their
interrelationships, though. Here we give several examples.
In [241], Guo et al. observed degraded facial age estimation

performance when conducted across gender and ethnicity.
The NIST age evaluation studied also the ethnicity and gen-
der impact [66]. Guo et al. [242] and Farinella et al. [244]
instead explored how ethnicity and gender interact with
each other in human face. In order to build a robust facial
gender classifier, Bekios-Calfa et al. studied dependence
between gender and age [245]. Towards gait-based age esti-
mation, Lu et al. included gender cue in age label encoding
and achieved better results [155].

Another problem is how to estimate multiple attributes
in an unified framework. For example, in [53], Yang et al.
predicted the three attributes independently from face, fol-
lowing an assumption that there is no relation among them.
Guo et al. [246] and Yi et al. [67] instead presented frame-
works that can deal with the mutual influence implicitly
and thus estimate the three cues jointly. In spite of these
efforts, whether and how to incorporate the correlation
among different attributes require further investigation,
especially for other traits.

6.3 Correlation Among Age Labels

Human age is strongly correlated and biometric samples
with neighboring age values share more than those further
apart. For instance, a human face of 60 years old looks more
similar to that of 55 than that of 15. To exploit this observa-
tion, most existing approaches seek a regression solution to
scalar age value estimation. These approaches, though, fail
to well capture complicated correlation among age labels
when there is no adequate training data available. We dis-
cussed in Section 4.4 several techniques specially developed
for this issue, including ranking algorithms, label distribu-
tion learning, and cost sensitive strategies. Such approaches
are yet limited and investigated only for face modality.
More efforts are therefore needed to well study this issue.

6.4 Limited Labeled Data for Age Model Developing

For learning an age model robust to the uncontrollable and
personalized age progression, one big challenge is the acqui-
sition of labeled data with either biological or apparent age
values available. Existing databases either include very few
ages for each individual (shallow) or provide data of very
few subjects (narrow). For example, the deep but not broad
FG-NET and the shallow but broad MORPH II databases. A
deep and broad database allows for both the study of indi-
vidual age progression and the extraction of common aging
trend among different subjects. Collecting such databases is
thus crucial but very difficult in practice. Privacy issue is one
concern. The long time it may take is another problem.
Although for some traits like face, nowadays we can easily
collect a huge amount of unlabeled data from internet, man-
ually labelling is tedious and error prone. This makes the
study of biometric age estimation extremely hard.

6.5 Vague Concept of Age & Race Groups

For age group/race classification, one important issue is
the definition of age/race groups. As presented in Section 5,
different age groups have been utilized for evaluation of dif-
ferent algorithms, e.g., four-group classification in Paralin-
guistic Challenge 2010, seven-group in Gallagher group
photos, and eight-group in Adience benchmark. However,
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it is not investigated whether using different age group con-
cepts affects the performance. It is thus indefinite which
concept offers a sounder evaluation platform. For this issue,
Dibeklioǧlu et al. proposed an adaptive age grouping
approach which defines age groups automatically [131].
Likewise, race groups are loosely defined due to inter-
mingling of distinct races, e.g., two-category classifica-
tion in [12], [174], three-category in [44], five-category in
[242], and even deciphering Chinese, Japanese and Kore-
ans in [243]. Again, it is unexplored in biometric commu-
nity which concept we should follow for race tasks.
Another challenging issue regarding age group/race
classification lies in the ambiguity. For example, in
Adience database, should we classify a person of 35 years
old into Group 25 � 32 or Group 38 � 43? And for race,
there are quite a few subjects in the world whose parents
come from different races, making it difficult to precisely
determine their race groups. An interesting attempt was
from Zhong et al. [247], which viewed ethnicity categori-
zation as a fuzzy problem and then assigned each face a
reasonable membership degree.

7 OPPORTUNITIES

Bearing in mind all lessons learned from the existing work,
in this section, we list a couple of promising future direc-
tions, by pointing out several key factors that will play a
dominant role in shaping the future.

7.1 Biologically Inspired Model Investigation

Given the remarkable ability of humans for demographic
analysis, it is favorable to look to biologically inspired mod-
els for improving machine performance. Among existing
techniques, Gabor and BIF are two such models. Gabor
wavelets, whose kernels are similar to 2D receptive field
profiles of mammalian cortical simple cells, have been
widely used for computing face, iris and gait representa-
tions. BIF is similarly designed following models of primate
visual system. Another two biologically inspired models are
artificial neural networks and human visual attention [248],
[249]. Using deep neural networks, encouraging results
have been reported for face and pedestrian-based demo-
graphic systems. With the availability of large amount of
biometric data and powerful computational hardware, it
will be of significant interest to investigate these models
using different modalities. This is particularly significant
when working with unconstrained data.

7.2 Unlabeled Data & Context Investigation

As stated above, one major difficulty of current age estima-
tion comes from limited labeled data. This is also the case of
gender and race grouping. A straightforward solution is to
exploit unlabeled data. There have been some such attempts
on using human face, owing to the availability of large
amount of data from web sources. Some researchers manu-
ally/automatically annotated unlabeled samples and used
them as new training data for semi-supervised learning,
e.g., the work of Cherniavsky et al. for gender & age classifi-
cation [250] and the work of Liu et al. for scalar age value
estimation [211]. Some tried to approximate age ranks/dif-
ference of unlabeled data, which offered some weak

supervision to age estimation [209], [210]. Ni et al. instead
crawled face images from web by a set of age related
text queries which then serve as age labels of crawled
data [202]. Many recent deep models pretrained for
object/face recognition belong to also such attempts
[102], [213], [218], [219], [220]. Besides unlabeled data,
context is another informative resource. For instance,
Gallagher et al. estimated age and gender by exploiting
first name priors [251] and social context [239]. In [103],
object correspondence in successive video frames was
examined as weak supervision for demographic analysis.
Song et al. investigated also video context to enforce age
consistency of multi-view face images [252].

7.3 Apparent Demographic Analysis Investigation

In 2009, Gao et al. estimated subjective ages from consumer
face images [68]. In 2015, the ChaLearn LAP Challenge
boosted the research on face-based apparent age estimation.
Besides age, Davis et al. estimated perceptual gender from
point-light trajectories of human gait [143]. These attempts
all belong to apparent demographic work. Despite being
strongly correlated with each other, an apparent attribute of
a person may be very different from the corresponding bio-
logical one. For instance, in experiments of Davis et al.
[143], seven among 50 persons are falsely perceived as their
opposite genders. This is particularly the case for age detec-
tion, e.g., some people might look/sound younger than
their actual ages. As a result, existing methods developed
for biological demographics may be not optimal for appar-
ent tasks. When developing new methodology, two issues
should be taken in account. First, there is often no adequate
training data with perceptual/apparent demographic labels
available. Second, annotated/subjective labels might not be
consistent among different assessors.

7.4 Feature Modeling & Metric Learning
Investigation

In Section 4.3, we described various features extracted from
different traits. Many existing approaches employ directly
these “primitive” features. They are demographic informa-
tive, though, designing useful algorithms to model or orga-
nize them can result in more advanced descriptors which
generally possess some attractive characteristics, e.g., dis-
criminative, pose/view invariant, cost sensitive, robust to
limited training data, etc. We give several examples here. In
[118], Zhuang et al. applied HMM supervectors to DCT fea-
tures, achieving a representation better capturing spatial
structure of human face. Yan et al. instead modeled DCT
by GMM and obtained a facial representation robust to
misalignment [117]. In [206], Li et al. learned an ordinal
discriminative representation from Gabor facial features
to preserve both local manifold structure of data and
ordinal information among age labels. The aging pattern
subspace built on AAM facial features can work well
with incomplete training data [113]. Therefore, it will be
interesting to investigate such feature modeling techni-
ques using diverse modalities. This is also the case of dis-
tance metric learning [203], [207], [253], by investigating
which we can obtain a metric more suitable to the task at
hand rather than directly using euclidean distance or
cosine similarity.
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7.5 Fusion of Multiple Modalities

Most existing work on demographic analysis employs a sin-
gle modality. One issue involved in such unimodal systems
is how to contend with noises in sensed data, e.g., a voice
sample altered by cold or a low-resolution face image. A
simple but useful solution is the employment of multiple
modalities, e.g., gender determination using fusion of face
& ear in [88], face & gait in [148], and face & voice in [254].
As demographic systems are expected to operate in uncon-
strained conditions, fusing different modalities certainly
offers an alternative to provide supplementary information,
and thus to render them more robust.

7.6 Integration with Mobile & Wearable Devices

As technology progresses, new hardware continues to
emerge. Rapid improvements in both computing and stor-
age allow deploying more powerful algorithms to process
data. Nowadays, more and more mobile & wearable devices
support biometric technology for quick user verification. It
is intriguing to include also demographic functionality in
these devices. Nevertheless, there is far less such work in
both academia and industry, than biometric authentication.
An appealing example is the Google Glass software from
Fraunhofer Institute12 which can read the emotion of every-
one you talk to and tell you their age and gender.

8 CONCLUSION

Biometric data conveys a wealth of personal information.
Demographic attributes are among these signals. Over the
decades, we have witnessed tremendous efforts devoted to
biometric demographic analysis, with a good deal of prog-
ress achieved. This survey provided a comprehensive over-
view of these efforts and achievements. We began by listing
some interesting points on human demographic perception
and then traced the history of automatic demographic esti-
mation. A systematic review of the state-of-the-art was then
provided. Finally, we highlighted some critical challenges
and offered some insights into the future.
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