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Complementary Cohort Strategy for
Multimodal Face Pair Matching
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Abstract—Face pair matching is the task of determining
whether two face images represent the same person. Due to
the limited expressive information embedded in the two face
images as well as various sources of facial variations, it becomes
a quite difficult problem. Toward the issue of few available
images provided to represent each face, we propose to exploit an
extra cohort set (identities in the cohort set are different from
those being compared) by a series of cohort list comparisons.
Useful cohort coefficients are then extracted from both sorted
cohort identities and sorted cohort images for complementary
information. To augment its robustness to complicated facial
variations, we further employ multiple face modalities owing
to their complementary value to each other for the face pair
matching task. The final decision is made by fusing the extracted
cohort coefficients with the direct matching score for all the
available face modalities. To investigate the capacity of each
individual modality on matching faces, the cohort behavior,
and the performance achieved using our complementary cohort
strategy, we conduct a set of experiments on two recently collected
multimodal face databases. It is shown that using different
modalities leads to different face pair matching performance. For
each modality, employing our cohort scheme significantly reduces
the equal error rate. By applying the proposed multimodal
complementary cohort strategy, we achieve the best performance
on our face pair matching task.

Index Terms—Face recognition, multimodal fusion, RGB-D,
cohort information.

I. INTRODUCTION

HE ANALYSIS of human faces has been a long standing

problem in computer vision and pattern recognition.
It has received significant attention due to its wide applications
in access control and video surveillance (for example, for
human identity recognition) [1], human-computer interaction
(for example, for emotion analysis) [2] and demography
(for example, for gender recognition, ethnicity classification
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and age estimation) [3]. Among these applications, automat-
ically recognizing humans by analyzing their faces, i.e., face
recognition, has been one of the most extensively studied
problems in the scientific community. A face recognition
system can be an identification system, a verification expert, or
a pair matching system. In both identification and verification
scenarios, there is a pre-enrolled face database, storing the
template for representing each registered user [4]. An iden-
tification system aims to decide which subject in the pre-
enrolled database, a probe face image comes from, while
the task of verification is to determine whether a query face
image belongs to the user represented by its claimed template.
Differing from these two tasks, in face pair matching, there
is no pre-enrolled template database. Given two face images,
the goal is to decide whether they are from the same person
(a genuine pair) or not (an impostor pair) [5]. Notice that in
this task, the only available information is the photometric
information embedded in the two images, which makes this
task extremely hard. This is the focus of our work.

In 2008, the release of the Labeled Faces in the Wild (LFW)
face database makes face pair matching become a popular
topic in both the research and industrial community [5].
To well handle diverse facial variations presented on the two
face images being compared, a number of powerful facial
descriptors have been devised. These facial features are either
handcrafted or learned. The patch-based LBP codes [6], the
learning-based (LE) descriptor [7] and the discriminant face
descriptor (DFD) [8] are some representative facial represen-
tations. Very recently, using a large deep neural network to
derive an elaborated facial representation has shown a great
potential. Deep learning performs well in particular when large
training sets are available. It has seen great success in various
domains including computer vision, language modeling and
speech. Two representative methods are the DeepFace [9]
and the DeepID [10]. Instead of developing useful facial
representations, another category of approaches aim to learn
an appropriate similarity measure to better drive the matching.
Logistic discriminant metric learning (LDML) [11] and cosine
similarity metric learning (CSML) [12] are among these
algorithms.

Besides the face pair matching scenario, in many identi-
fication and verification applications, due to the difficulty of
gathering face images and the cost for storing and processing
them, only very few or even single sample is provided for
each identity [13]. In such cases, we do not have enough
information to predict the variations in the test samples,
either. To address these problems, quite a few recent attempts
concentrate on exploiting an additional set of face images

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



938 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 5, MAY 2016

to compensate for the lack of representative informat-
ion [6], [14], [15]. Generally, face images in this extra set
do not belong to the subject/subjects being compared/tested.
Several terms representing this face set in the literature include
the background database, cohort set, generic set, library, mem-
ory, etc. In this article, we use cohort to indicate this concept,
face images in the cohort set are then called cohort samples.
Thus, we are interested in exploiting useful information from
a set of cohort face images for our face pair matching task.

Parallel to the development of facial feature extraction
and face matching [16], different face modalities (depth,
thermal, etc) have also been exploited to handle compli-
cated facial variations [17], [18]. Generally, different face
modalities behave differently when facing different imaging
conditions/degradations, for example, depth images can handle
changes caused by different poses to some extent, but suscep-
tible to expression variations. For thermal images, they are
sensitive to the temperature changes of the surrounding envi-
ronment. Thus, a reasonable way to utilize these modalities is
to fuse them for the reduction of diverse corrupting factors,
which usually affect different modalities in different degrees.
As for our face pair matching task, fusion of different modal-
ities certainly offers an alternative to provide supplementary
information for the lack of information. Therefore in this work,
we focus on multimodal face pair matching. Specifically, we
propose a modality-specific Cohort List Comparison (CLC)
scheme to perform this task. To the best of our knowledge
this work proposes the first multimodal cohort based face pair
matching system. More specifically, the main contributions of
this work are:

1) Modality-Specific Cohort List Comparison. To perform
multimodal face pair matching using cohort, we propose to
independently perform a series of cohort list comparisons
for each individual modality, including both Cohort Identity
List Comparisons (CILC) and Cohort Sample List
Comparisons (CSLC). By using both approaches, we
expect cohort coefficients extracted by one approach to be
complementary to those extracted by the other approach, for
our face pair matching task.

2) Application to Multimodal Face Pair Matching. A series
of 1-modal, 2-modal and 3-modal face pair matching experi-
ments are conducted on two recently collected multimodal face
databases to discover the potential of each individual modality
on matching faces, the cohort behavior and the performance
of fusing different modalities.

3) Analysis of Cohort List Comparison. We further provide
an analysis of our CLC including its differences from several
existing cohort investigation approaches and the complemen-
tarity of CILC to CSLC for our face pair matching task.

The rest of the paper is organized as follows: Section II
gives some existing work on face recognition using cohort
information and different modalities. Our proposed multi-
modal complementary cohort strategy is detailed in Section III.
Section IV goes on to test our algorithm on two recently
collected multimodal face databases. Section V is devoted
to the discussion of several issues involved in the proposed
approach. Finally, we conclude the whole work and further
give some interesting future work in Section VL.

II. RELATED WORK

In this section, we provide a short literature review on face
recognition using cohort information and different modalities.

A. Face Recognition Using Cohort Information

Cohort samples, whose identity is different from those
of samples being compared, are early used to improve the
recognition performance of a biometric system. It was ini-
tially proposed for speaker recognition [19], [20], and then
successfully applied to fingerprint verification [21]-[23], face
verification [24], sparse representation based face identifica-
tion [25], unconstrained face pair matching [14], [26] and
multi-biometrics [27]. The interested reader is referred to [14]
for further information on using cohort to improve a biometric
system. Here, we present only several existing cohort/cohort
similar techniques related to face recognition.

For comparing two faces under significantly different set-
tings, Schroff et al. proposed to describe an input face image
by an ordered list of identities from a Library [15]. In the
ordered list, identities are ranked according to their similarity
to the input face image. The similarity between two face
images is then computed as the similarity of their correspond-
ing ordered lists. For the same purpose, Yin et al. proposed
to “associate” a test face with alike identities from an extra
generic identity data set [28]. With the associated faces, the
likelihood whether two input faces are from the same person
or not can then be discriminatively “predicted”. To apply the
traditional sparse representation-based classifier [29] to under-
sampled face identification, an auxiliary intra-class variant dic-
tionary was employed in [30] to represent possible variations
between training and test images. The dictionary atoms, rep-
resenting intra-class sample differences, were computed from
a set of generic faces. To address the same problem, in [31],
a sparse variation dictionary was learned from a generic set
to improve the test sample representation by a single training
sample per person. Liao et al. [32] proposed an alignment-
free sparse representation approach for partial face recognition.
The gallery descriptors used in this approach were extracted
from a set of background faces together with one of the
two input faces. To handle unconstrained face pair matching,
Tistarelli et al. developed a picture-specific cohort score nor-
malization approach [14], by extracting discriminative cohort
coefficients from a pool of sorted cohort samples using poly-
nomial regression. Wolf et al. learned a discriminative model
exclusive to the two face images being compared from a set
of background samples [6]. In another work, an additional
identity data set was employed for building a set of either
attribute or simile classifiers [33]. Li et al. trained a Gaussian
Mixture Model (GMM) on the spatial-appearance features by
employing an independent training set [34], each Gaussian
component was then used to build correspondence of a pair
of features to be matched between two face images. A similar
GMM with diagonal covariances was trained on dense patch
features in [35] to compute the fisher vector representation
of a particular face image. A training set, which does not
include samples of the identity/identities being compared, was
employed.
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Fig. 1. Several face images of RGB, depth and thermal modalities from the
database of [43].

B. Face Recognition Using Different Modalities

In the literature, some significant attempts have been
devoted to explore the usefulness of different face modalities.
3D face recognition is among these techniques [17]. With a
3D model, face images with different poses can be aligned
owing to the well captured facial geometry information.
Furthermore, the 3D face shape is illumination invariant. This
technique does offer a more suitable description of facial
features than 2D models, increasing the robustness to view-
point and lighting variations. However, the low acquisition
efficiency and high cost of 3D scanners limit its use in
practical applications. With progress in sensor technology, low
cost sensors have been developed capable of capturing less
accurate 3D information in the form of RGB-D images. The
Kinect is among such devices, which can provide synchronized
images of both color (RGB) and depth (D). The color image
depicts the appearance and texture information of a face,
while the depth map measures the distance of each pixel
from the camera. Exploiting RGB-D images has become
more and more popular in tackling various computer vision
problems [36]—[38]. In [39]-[42], interesting work on using
RGB-D images for face recognition was presented. Another
less commonly used modality is the infrared imagery [18].
A thermal (T) infrared image records the amount of infrared
radiation emitted by an object. The amount of radiation
increases with temperature, therefore, this imagery allows us to
see variations in temperature. When viewed through a thermal
imaging camera, humans and other warm-blooded animals
become easily visible against the cool environment, with or
without visible illumination. In Fig. 1, we show several RGB,
depth and thermal images of one person from the face database
of [43].

III. MULTIMODAL COMPLEMENTARY COHORT STRATEGY

In this work, we concentrate on multimodal face pair match-
ing. Consequently, in our problem, for each face of a pair, we
have multiple synchronized images corresponding to different
modalities, as illustrated in Fig. 2 (a). Suppose m shows the
number of the available modalities. For example, in RGB-D
based face recognition, m = 2. For each particular modality,
after matching the corresponding two face images, we can
get a similarity score. In this work, we use cosine similarity
as the similarity measure. Euclidean and Hellinger distances,

Modality 1

Modality 2

Modality m

@ ®)

Fig. 2. Examples of test and cohort face images used in our framework.
(a) Two test face images; (b) cohort face images.
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Fig. 3. Framework of multimodal face pair matching on the score level
fusion. My, M3, ..., My, represent the m modalities.

however, can be equally used in our proposed framework.
In order to both effectively and efficiently utilize informa-
tion provided by different modalities, we employ the score
level fusion strategy, following the taxonomy in information
fusion [44]. In comparison to the decision level fusion, score
level fusion preserves more information, while requires much
lower complexity than the feature level fusion. The schematic
process is depicted in Fig. 3.

To better drive the matching, we exploit background infor-
mation from an extra cohort set. Similarly, in the cohort set,
for each cohort face, we incorporate synchronized images
from different modalities, as shown in Fig. 2 (b). Our pro-
posed modality-specific approach for multimodal face pair
matching using cohort information is represented in Fig. 4.
Take the RGB modality as an example, we have two input
RGB face images together with a set of cohort RGB face
images. By ranking all the cohort images according to their
similarity, namely cosine similarity, to the two input face
images, we can get two ordered cohort lists, respectively. Next,
cohort information/coefficients embedded in the two sorted
cohort lists can be extracted and further combined with the
direct matching score of the two test face images, i.e., their
cosine similarity denoted as rawSC, forming the final RGB
contribution (Mjcontri). In the same way, we can obtain
contributions of other modalities (Mycontri, ..., Mycontri).
The final decision is made by fusing all the m contributions.

The method we developed for extracting cohort information
is based on a series of cohort list comparisons. In CLC,
we include both cohort identity list comparisons and cohort
sample list comparisons. In both comparisons, we have the
same cohort face images from a set of subjects. We call
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Fig. 4. Framework of the proposed multimodal complementary cohort strategy for face pair matching. Mjcontri, Mycontri, ..., My contri represent

contributions of the m different modalities to the final decision matching.

faceA2

faceAl

faceB1

Fig. 5.

cotresponding ranked cohort lists

Visual interpretation of CILC. The cohort set used to compute the ranked cohort list contains 1,700 images from 17 cohort subjects, each with

100 images. Therefore, each ranked cohort list denotes an ordering of all the 1,700 images. The figure displays only the top ten positions, corresponding to
the first 10 closest cohort samples to the test face image. Cohort images marked by the same kind of squares (solid or dashed) share the same cohort identity.

Face images are from the database of [43].

these subjects cohort subjects or cohort identities. In CILC,
cohort information is extracted from sorted cohort identities,
using their positions in the ranked cohort list. However, we
investigate cohort information from sorted cohort face images
in CSLC by means of ranked cohort scores, i.e., similarity
scores between cohort samples and test face images. The
reason why we use these two different cohort algorithms is
that we expect cohort information discovered by them to be
supplementary to each other for our face pair matching task
(This will be shown in the experimental result section). Let
I1 and I, represent the two test face images, say in the RGB
modality, being compared. The cohort set C is composed of
H face images from N subjects. We denote the two sorted
cohort lists, obtained by sorting cohort samples in C according

to their similarity to /1 and I, as C; = [c11,...,¢1H] and
C [ca1,...,com], where c11(cz1) is the nearest cohort
sample to I1(l) and cig(c2p) is the furthest one. Next, we
explain the details of how to implement CILC and CSLC using
Cy and Cj.

A. Cohort Identity List Comparison

A visual explanation about how CILC works is displayed
in Fig. 5. We have one genuine pair and one impostor pair.
For the genuine one, the two images faceAl and faceA2 are
captured with different poses, whereas faceAl and faceB1 of
the impostor pair are both frontal faces. By ranking all the
cohort images with respect to their closeness to the three test
images, we can get three corresponding ranked cohort lists.
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Our CILC approach draws its motivation from the observation
that if two people look like each other, then they should to
some extent share similar expressions, profile views, etc. Let
us look at faceAl and its cohort list in Fig. 5. Based on the
frontal view, the two cohort subjects marked by solid and
dashed squares look similar to the subject pictured by faceAl.
Correspondingly, they should have similar profile views to
the subject of faceAl. This is verified in Fig. 5 by faceA2
and its cohort list, where the side views of the two cohort
subjects locate at positions close to faceA2, which is the profile
view of the subject represented by faceAl. Furthermore, the
positions of their side and frontal views in the two cohort
lists are not far from each other. For example, for the cohort
subject marked by the solid square, its side views locate at
positions [2,5] in the first cohort list, while the positions
of frontal views in the second cohort list are [1,7, 8,9, 10].
For an ordering of 1,700 images, [2,5] and [1,7,8,9, 10]
are close positions. On the other hand, if two people look
quite different from each other, their top ranked cohort lists
should include quite few images of common cohort subjects
even when they are captured under similar imaging conditions,
as substantiated in Fig. 5 that faceAl and faceB1 share zero
common cohort identities. Based on this observation, we can
describe a test face image by its ranked cohort list. For
comparing two test face images, we calculate the similarity of
their corresponding ranked cohort lists as cohort information
to assist the comparison.

Our proposed CILC is similar to the Doppelginger list
comparison developed in [15]. However, each cohort identity
appears only once in the Doppelgidnger list, while in our
cohort set, each cohort identity can have multiple images,
thus appearing multiple times and corresponding to multiple
positions in the ranked cohort list. As discussed in [15], for
distinguishing between genuine and impostor face pairs, top
positions in a ranked cohort list include far more discriminative
information than later ones. Accordingly, we employ only
the first K cohort samples in C; and C, for cohort
coefficient computation, i.e., Coh; = [c11,...,c1k] and
Coh, = [c21,...,c2k]. The developed algorithm for
computing cohort coefficients embedded in the ranked cohort
lists is described in Alg. 1.

We use coefCIl to represent the cohort coefficients
extracted by CILC, namely the similarity of I; and I, deter-
mined by the similarity of their ranked cohort lists rather
than their cosine similarity. We include three similarity in
coef CI, which are computed in three different levels. When
computing sim1, for each cohort identity, we employ only its
closest sample to the test image. That is only its first cohort
position is considered. For each cohort identity, let s and ¢
represent the numbers of its cohort positions previous to K in
the two sorted cohort lists, C; and C,, respectively. During the
computation of sim?2, we consider the first » cohort positions,
r is the minimum of {s,7}. When computing sim3, all the
cohort positions of a cohort subject are considered as long as
they are previous to K. The computation of sim1, sim2 and
sim3 is based on the weighted voting scheme of neighbors
proposed by Jarvis et al. for clustering [45]. In our following

Algorithm 1 Cohort Coefficient Computation by CILC
Input: Cohy, Cohy, N, K;
Output: coefClI,
Set siml =0, sim2 =0, sim3 =0;
Set ct1 =0, ct2 =0, ct3 = 0;
fori =1to N do
Let posi = [ri1,...,r15] and posy = [ro1,..., 7]
represent the ranks of the i’” cohort subject’s images in
Coh, and Cohy;
r =min(s,t);

if r > 1 then
siml = siml + (KH_”}()X(KKH_QI)'
X )
ctl =ctl + 1,

for j =1tor do
sim2 = sim2 +
ct2=ct2 +1;

end for

for p=1to s do

Find the closest value in pos; to rqp, denoted as ray;
(K+1=r1p)x(K+1=r) .
KxK >

(K+1=r1j)x(K+1-ry;)
KxK ’

sim3 =sim3 +
ct3 =ct3+1;
end for
forg =1to ¢ do
Find the closest value in posy to ry,, denoted as r1p;

(K+17r1,,)><(K+17r2q).
KxK ’

sim3 = sim3 +
ct3=ct3+1;
end for
end if
end for

accumulated similarity,

sim:sim+(K+1_r1u)X(K+1_r2U) )
K x K

r1, and rp, are positions of the two cohort samples from one
cohort subject in the two ordered cohort lists, respectively.
Then, if both cohort samples are the closest ones to their
corresponding test faces, namely 7, = 1 and rp, = 1, their
contribution to the similarity computation can be calculated
as K x K. However, if both locate at the furthest positions,
i.e., 1y = K and rp, = K, their contribution turns to 1. This
similarity calculation scheme is in keeping with the notion
that the more similar a cohort sample to the test sample, the
more information about the local density of the test image that
cohort sample can provide. By dividing K x K, we aim to get
normalized contribution. A further normalization procedure is
followed by dividing the number of accumulated contributions,
ie., ctl, ct2 and ct3 in Alg. 1. The extracted coefCI to
some degree provides invariance to the direct matching score
rawSC across different expressions, poses, etc. A detailed
discussion about the usefulness of coef CI in matching faces
will be given in Section V. In the following sections, for
simplicity, we use coef CI = [sim1, sim2, sim3] to represent

__rsiml sim2 sim3
CoefCI - [ ctl > ct2 > 13 ]
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B. Cohort Sample List Comparison

Note that in the above described CILC, cohort coefficients
are calculated by positions of each cohort identity in the
ranked cohort lists. Now we keep on extracting cohort
information embedded in them, but by means of sorted
cohort scores between cohort samples and test samples.
To do so, we expect the extracted cohort coefficients will
provide some complementary information to those discov-
ered by CILC. Given I} and I, and their ranked cohort
lists C; = [ci1,...,Clh,---,Cc1g]l and Cy = [ca1,...,
C2hs - - -» C2H ], we employ the picture-specific cohort ordering
strategy developed in [14] for CSLC. For comparing two
face pictures, this technique stems from the observation that
cohort samples, sorted by their closeness to the reciprocal
face picture, produce some discriminative information between
genuine and impostor pairs. Polynomial regression is then used
to extract this discriminative information.

Let sc1 = [sci1,...,S8Clh,...,Sc1g] denote the cohort
score list of I; and all the cohort samples in Cp. That is,
scyy is the similarity score between Iy and cp;. Similarly,
sco = [scar, ..., 8¢on, ..., scyg] lists cohort scores of I, and
all the cohort samples in C;. sc; and sc; are the two so-called
picture-specific cohort score lists. Be warned that the ordering
of the cohort score profile for /7 is determined by /; and that
of I, is determined by I;. Next, we consider cohort scores in
sc1 and sc; as discrete points on two functions of rank orders
as follows:

scin = fi(h) 2
scop = f2 (h) 3)
where h = 1,2, ..., H. Now let us move on to the conception

behind the picture-specific cohort ordering strategy in [14].
If I; and I are from the same subject, their ranked cohort
lists C1 and C» should to some degree look similar. Note
that scores in sc; are cohort scores between I; and all the
cohort samples in C;, which are previously sorted according to
their closeness to ;. Consequently, scy (or f1) should follow
a decreasing profile as the cohort sample order % increases.
However, if I1 and I, are from an impostor pair, sci (or fi)
should correspond to a disorganized/flat one. Likewise, we can
get a similar conclusion for sc; (or f2).

Now we focus on how to extract this discriminative infor-
mation between cohort score profiles of genuine and impostor
pairs. The two functions are approximated using polynomial
regression as follows:

fi () = wiph" + w1, th" 4.+ wnh+wie (4

o (h) ~ wauh™ + wyyth" .+ wah +w (5)
where w; = [wi0, Wi1,...,Wwi1n] and w2 = [w2o,
w21, ..., w2,] are the two approximated polynomial
coefficient vectors. Further, cohort scores in sc; and
scy can be approximated by the n 4 1 coefficients
in w; and w;, respectively. Finally, we can use w;
and wy to approximately represent the discriminative
information included in sorted cohort scores and have
coefCS = w1, wa].

0.55 it ‘ ‘ i
[gPair: w2 iPair: w1 o gPair: sc1
wope gPair: sc2
L o |
08 |iPair:w2| lgPair: wi] ? e iPair: s¢1
i : e iPair: sc2
0.45 Q [+ i) gPair: w1 [
—gPair: w2
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® :
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=
8
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0 100 200 300 400 500 600 700 800
cohort sample order

Fig. 6. Cohort score profiles and the corresponding fitting lines for a genuine
pair and an impostor pair, computed from the RGB modality of the database
of [43]. The cohort set contains 1,700 face images, thus we have a total
of 1,700 cohort orders and 1,700 cohort scores in sc; and scp. However,
we employ only half of them for polynomial regression by sampling the
1,700 sorted cohort scores in a step of 2. Accordingly, the cohort orders are
from 1 to 850. “gPair” and “iPair” stand for the genuine and impostor pairs,
respectively.

In Fig. 6, we display the two picture-specific cohort score
profiles (sci and sc;) as well as their fitted curves (w1 and w;)
for a genuine pair (denoted as “gPair”) and an impostor pair
(“iPair”) to demonstrate the effectiveness of our extracted
coef CS. The two pairs are selected from the RGB modality of
the database of [43]. We simply employ linear functions to fit
cohort score profiles, i.e., the polynomial degree n = 1. As can
be seen, noises presented on the cohort score profiles are
significantly reduced after polynomial regression, making the
discriminative information embedded in sc; and scy between
genuine and impostor pairs more significant. This is illustrated
in the fitted lines in Fig. 6, where two lines of the genuine pair
follow a downslope path as the cohort sample order increases,
whereas the course of the impostor lines is flatter.

C. Classification

Let rawSC signify the matching score of /1 and I
obtained by directly comparing them. By the above presented
CILC and CSLC, we can obtain two cohort coefficients
coefCI and coefCS. Each of {rawSC, coefCI,coefCS}
contains different but complementary information which can
be combined to enhance the classification performance. Up to
now, we have finished comparing two test face images
by our modality-specific cohort list comparison using the
RGB modality. We use Mjcontri to indicate the fusion of
[rawSC, coefCl, coef CS]. By applying the above described
procedures to other modalities, we can get their corresponding
contributions: Mjcontri,..., My contri. Next, we aggregate
these contributions by training a logistic regression classi-
fier [46], which can provide discriminative weights on each
parameter of [Mcontri, Mycontri, ..., My contri]. The final
matching score is approximated as:

finalSC = P (G | Micontri, Macontri, ..., Mycontri)
(6)
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(a) (b) (©)

Fig. 7.

(€) @ (@)

(h) (@)

Face images of one subject from one session corresponding to different facial variations on the KinectFaceDB database. The lower depth maps are

aligned with the upper RGB images. (a) Neutral; (b) smiling; (c) mouth open; (d) strong illumination; (e) sunglass occlusion; (f) hand occlusion; (g) paper

occlusion; (h) right profile; (i) left profile.

where P (G | Mjcontri, Macontri, ..., My, contri) repre-
sents the probability of being a genuine pair. In other words,
the larger finalSC is, the more probable /; and /> come from
the same person.

IV. APPLICATION TO MULTIMODAL FACE PAIR MATCHING

In this section, we apply our proposed modality-specific
cohort list comparison to multimodal face pair matching. First,
we describe the employed databases of KinectFaceDB [39]
and RGB-D-T [43] which are used to determine the actual
performance of the proposed approach.

A. The KinectFaceDB Database

KinectFaceDB is a publicly available face database collected
by the Kinect sensor [39]. It consists of different face
modalities, including the RGB image, depth map and com-
puted 3D point cloud. For each modality, there are 936 shots
from 52 individuals. The database was recorded in
two different sessions, with 5-14 day intervals between them.
In each session, 9 facial variations were recorded, i.e., neutral
face, smiling, mouth open, strong illumination, occlusion by
sunglasses, occlusion by hand, occlusion by paper, right face
profile and left face profile. Thus, each subject has 18 face
images for each modality. For the depth map, the authors
provide a .bmp depth image and a .txt file with the depth
information of each pixel in the original coordinates. We use
the .bmp depth map for our experiments. Fig. 7 illustrates the
RGB and depth images of one subject from one session. With
the RGB and depth images, the 3D coordinates can be com-
puted directly. However, the low quality/depth resolution of
the Kinect 3D model makes the face recognition performance
not promising, as shown in [39]. Thus, in this work, we use
only the RGB and depth modalities for our multimodal face
recognition.

The evaluation protocol designed by authors of the
KinectFaceDB database is for face identification and face
verification. To benchmark our algorithm, we define a new
protocol specific for face pair matching. For each modality,
we divide the 52 subjects into three folds, which includes 17,
17 and 18 subjects, respectively. With such a division scheme,
the subjects are disjoint from one another in the three folds.
Consequently, there are 17 x 18 = 306, 17 x 18 = 306 and

TABLE I
DATA CONFIGURATION OF THE 3 FOLDS ON KINECTFACEDB

Fold 1 2 3

# subjects 17 17 18

# images 306 306 324

# total matches 46,665 | 46,665 52,326
# genuine matches 2,601 2,601 2,754
# impostor matches | 44,064 | 44,064 | 49,572
# cohort samples 306 306 324

18 x 18 = 324 images in the three folds, as listed in Table I.
We perform 3-fold cross validation experiments. In each one
of the three experiments, one fold is used for evaluation, one
is the development set, and the remaining one is used as the
cohort set. When we perform face matching in the evaluation
and development sets, each face image is compared against all
the remaining images. For example, if Fold 1 is used as the
development/evaluation set, then the number of total matching
is C3,s = 46, 665, including 17 x C3; = 2, 601 genuine and
44,064 impostor matches. Be warned that, in such defined
protocol, we can cover a number of challenging matches. For
example, a right profile of a person is compared with his/her
occluded face by the paper. If one fold is used as the cohort set,
then for both CILC and CSLC, all the images in this fold are
used as cohort samples. The data configuration of the 3 folds
is listed in Table I.

B. The RGB-D-T Face Database

In [43], the authors organized a face database of 51 persons
including 45,900 facial images of synchronized RGB, depth
and thermal modalities. The Microsoft Kinect for Windows
was used to capture RGB and depth images, while thermal
images are obtained by the thermal camera AXIS Q1922.
This database incorporates three capturing scenarios, recording
facial appearance variations due to different poses, expres-
sions and illumination conditions. In each scenario, there
are 300 images for each person, with 100 RGB, 100 depth
and 100 thermal synchronized pictures. Together with the
database, the ground-truth data representing coordinates of
the face bounding box is also provided for each image.
With such a ground-truth data, face region can be easily
detected. Fig. 1 displays several detected face regions from
this database.
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TABLE 11
DATA CONFIGURATION OF INDIVIDUAL FOLDS ON RGB-D-T

Fold | # subjects # images | # total matches  # genuine matches # impostor matches | # cohort samples
172/3 17 1,700 1,444,150 84,150 1,360,000 1,700
As presented above, each subject has 900 synchronized
images from RGB, D and T modalities, with each modality
containing 300 images. In our experiments, for each modality, — Crayscale

we select only 100 images from the entire 300 images of
one subject due to the high similarity between neighbour-
ing images. These 100 images include images from all the
three sessions. Therefore, in our protocol, we employ only
51 x 100 = 5,100 images for each modality. For each
modality, the total 5,100 images are separated into three folds,
with each fold 1,700 images from 17 subjects. Similarly, in
these three folds, the subjects are disjoint from one another.
Next, we can conduct 3-fold cross validation experiments as on
the KinectFaceDB database. When we perform face matching
in the evaluation and development sets, each face image is
compared against all the remaining 1, 700—1 = 1, 699 images.
In total, we have Cf,) = 1,444,150 matches, including
17 x C1200 = 84,150 genuine and 1,360,000 impostor
matches. For the cohort set, we employ all the 1,700 images
for both CILC and CSLC. Table II lists the data configuration
of individual folds on the RGB-D-T database.

C. Face Pair Matching Pipeline

Here, we provide some details about the preprocessing,
feature extraction and face matching involved in our face pair
matching pipeline.

1) Preprocessing: When dealing with RGB images, we
first convert them to grayscale ones on both databases. For the
RGB-D-T database, we directly detect the face region using
the available ground-truth information. For KinectFaceDB,
based on the manual landmarks provided by the authors,
the images are first cropped from 256 x 256 to
140 x 120 pixels, with distance between the two eye
centers set to 60 pixels. After cropping, the coordinate of
the eye center (vertical, horizontal) is equal to (40, 60).
For the right (left) profile images, the left (right) eye and the
nose are used to align them. These profile images are also
cropped to 140 x 120 pixels. For the right profile images, the
horizontal axis of the nose is set to 11 and the vertical axis of
the left eye is set to 40. Similarly, for the left profile images,
the horizontal axis of the nose is set to 110 and the vertical
axis of the right eye is set to 40. In Fig. 8, we show the
aligned grayscale images and depth maps. As can be seen,
the original depth maps are relatively noisy. For example, the
depth values on some pixels are sensed as Omm but their true
values are not zero. To fill these holes, closing operation is
further applied to depth maps. The improved depth maps are
also illustrated in Fig. 8.

2) Feature Extraction: We compute both Local Binary
Patterns (LBP) [47] and Histograms of Oriented
Gradients (HOG) [48] for facial feature representation.
For computing LBP, we first resize the preprocessed face
images to a fixed size 130 x 100 and then divide each face

! 1
Depth after
hole filling ‘
B dhedi | 1
Fig. 8.  Aligned grayscale images and depth maps on the KinectFaceDB

database.

image into non-overlapping blocks with size 10 x 10. For
each block, we extract a 59-bin uniform LBP histogram.
By concatenating histograms of all the blocks, we can get
a final feature vector of 7,670 dimension. Before extracting
the HOG feature, the preprocessed images are first resized
to 128 x 96. Next, we use the settings adopted in [48] for
our feature extraction. The cell size is 8 x 8, and each block
contains 2 x 2 cells. The number of orientation bins in the
histogram of a cell is set to 9. The resulting HOG feature
vector is of length 5,940. Since in this work, the focus is
on using cohort information and multiple modalities for face
pair matching, we do not perform further descriptor fusion,
which results in a single descriptor of length 7,670 + 5,940,
but simply use LBP and HOG separately.

3) Face Matching: It is worth emphasizing again that in
our work, for directly matching two test face images, ranking
all the cohort samples according to their similarity to the
test sample and computing cohort scores between cohort
samples and test samples, we employ the cosine similarity
as the similarity measure. For polynomial regression involved
in CSLC, we adopt a linear function to fit the two cohort
score functions f1 (k) and f> (h). For KinectFaceDB, there are
H = 306/324 cohort scores in sc; and sco, while H = 1, 700
for the RGB-D-T database. Be warned however, for RGB-D-T,
we employ only half of them for polynomial regression by
sampling the H sorted cohort scores in a step of 2. That is, we
use % = 850 cohort samples to regress the two cohort score
profiles. By doing this, we can perform polynomial regression
in a more efficient way but with slight information loss. For
training the logistic regression classifier, we use />-penalized
logistic regression which leads to maximum likelihood
estimate [49], [50]. Finally, the Equal Error Rate (EER) is
used as the performance evaluation measure [51].

D. Experimental Results

We perform a series of experiments on multimodal face pair
matching to investigate the power of each particular modality
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TABLE III

EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING
Two INDIVIDUAL MODALITIES ON KINECTFACEDB

Feature LBP HOG

Modality | RGB D RGB D

Foldl 4237 | 48.06 | 43.87 | 46.14

Fold2 44.29 | 47.33 | 46.17 | 46.33

Fold3 4248 | 4746 | 44.66 | 45.86

Mean 43.05 | 47.62 | 44.90 | 46.11
TABLE IV

EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY USING
THREE INDIVIDUAL MODALITIES ON RGB-D-T

Feature LBP HOG
Modality | RGB D T RGB D T
Foldl 27.04 | 29.79 | 31.42 | 29.06 | 31.15 | 27.87
Fold2 25.18 | 30.44 | 29.27 | 29.87 | 30.82 | 29.27
Fold3 27.95 | 3495 | 34.01 | 3348 | 34.81 | 35.22
Mean 26.72 | 31.73 | 31.57 | 30.80 | 32.26 | 30.79

on matching faces, the cohort behavior and the matching
performance achieved by fusing different modalities.

1) Potential of Individual Modality: The first sequence of
experiments is conducted to find out the capacity of each
individual modality on matching faces. In order to get a
clear insight of this, in these experiments, we directly use the
raw matching score rawSC for the classification instead of
getting help from cohort. We report the results of the 3-fold
experiments on the two databases as well as their mean EERs
in Table III and Table IV, respectively. From Table III, it is
easy to conclude that with both LBP and HOG, using the RGB
modality achieves much lower EERs than using depth maps
on the KinectFaceDB database. On the RGB-D-T database,
when LBP is used as the facial feature, the best performance is
obtained by the RGB modality. Depth and thermal modalities
lead to similar performance. However, when using HOG as the
feature, we get the best performance with the thermal modality
in most cases. As shown in the above results, LBP works better
on RGB images compared to the other modalities because
LBP is known to be more dependent on the texture [52],
which is more visible in RGB than in thermal and depth. HOG,
however, is more dependent on the edge information [48], [53],
[54]. The edges are more pronounced in thermal compared
to RGB and depth. From Fig. 1, we can observe that edge
information in depth is the least noticeable. This is consistent
with the above experimental resutls that HOG works better
with thermal and RGB than with depth.

2) Impact of Parameter K on CILC Performance: As
described in Section III-A, for all the H positions in the ranked
cohort list, we employ only the top K positions. Therefore, it
is interesting to find out the impact of different K values on
the generalization performance. For this issue, we still perform
experiments independently for each modality. In addition, we
do not take cohort coefficients determined by CSLC into
account, as it does not change the influence of K. Finally, the
input of our classifier becomes [rawSC, coef CI]. In Table V,
we show the EERs obtained by CILC with different values
of K on one fold of KinectFaceDB, using the LBP feature.

TABLE V

COMPARATIVE EERS (%) OBTAINED BY CILC WITH
DIFFERENT K VALUES FOR SINGLE MODALITY
ON KINECTFACEDB, USING LBP

Modality | noCLC | K=50 | K=100 | K=200 | K=300

RGB 42.37 32.06 | 3445 32.87 34.18

D 48.06 4141 | 44.18 43.21 4483
TABLE VI

COMPARATIVE EERS (%) OBTAINED BY CILC WITH
DIFFERENT K VALUES FOR SINGLE MODALITY
ON RGB-D-T, USING LBP

Modality | noCLC | K=100 | K=300 | K=500 | K=700
RGB 27.04 24.20 24.42 23.81 23.77
D 29.79 30.38 27.48 26.55 26.52
T 31.42 28.71 30.15 30.17 29.34

The results of RGB-D-T are reported in Table VI. We further
list the EERs achieved by using only the raw matching
score rawSC, denoted as “noCLC” in the two tables. It is
observed that K does not affect the performance significantly.
In all our following experiments, therefore we simply choose
K = 50 and K = 300 for KinectFaceDB and RGB-D-T,
respectively.

3) Discriminative Information Discovered by CSLC: Now
we visualize the discriminative information embedded in
sorted cohort scores discovered by CSLC for each modality.
The experiments are conducted on one fold of the RGB-D-T
database. Thus, we have 84,150 genuine and 1,360,000 impos-
tor pairs. For each pair, we can get two picture-specific cohort
score profiles sc; and scp, each of which is a single vector
of 850. Correspondingly, we can get a total of 84, 150 x 2 =
168, 300 genuine and 1, 360, 000 x 2 = 2,720, 000 impostor
cohort score profiles. Next, we respectively compute the
mean and standard deviation of these cohort score profiles.
Fig. 9 shows the cohort score distribution using LBP for each
modality. By illustrating the mean of large numbers of cohort
score profiles, we can get smoother cohort score distribution
than directly displaying single cohort score profile, i.e., the
noisy profiles shown in Fig. 6. As noticed from these figures,
the discriminative information between genuine and impostor
pairs is made explicit by CSLC.

4) Modality-Specific Cohort Behavior: Now we perform a
group of experiments to unearth the cohort behavior. Recall
that for each modality, the final contribution to matching
the two test face images is [rawSC, coefCI,coefCS] =
[rawSC, siml, sim2, sim3, wl, w2]. By cohort behavior, we
are driving at the amount of useful information that each
individual cohort coefficient can offer to the pair matching
task, namely their contributions. We quantitatively analyze
this cohort information by computing how much improvement
we can achieve in the presence of different cohort coeffi-
cients compared to the baseline system using only rawSC.
We use a group of tags to represent different systems, as
listed in Table VII. Thus, “noCLC” denotes the baseline
system using only rawSC and “CILCI1” is the system using
[rawSC, siml]. “CILC” indicates integrating only cohort
identity list comparison with the direct matching score, i.e.,
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Fig. 9. Distribution of cohort scores generated by ordered cohort samples for the three modalities on the RGB-D-T database, using LBP.
TABLE VII
TAGS USED TO REPRESENT DIFFERENT SYSTEMS

Tag noCLC CILC1 CILC2 CILC3 CILC

System | [rawSC] [rawSC, siml] | [rawSC, sim?2] [rawSC, sim3| [rawSC, coefCI)

Tag CSLCI CSLC2 CSLC CLC

System | [rawSC,wl] | [rawSC,w2] [rawSC, coefCS] | [rawSC,coefCI,coefCS]

[rawSC, coefCI]. In the system of “CLC”, we implement
our proposed CLC by including both CILC and CSLC.

The mean EERs of the 3-fold cross validation experiments
using both LBP and HOG are reported in Table VIII and
Table IX, for KinectFaceDB and RGB-D-T, respectively.
As observed, by using either CILC or CSLC, the EER is signif-
icantly reduced on both databases. However, CSLC achieves
much lower EER than CILC. Take the HOG feature as an
example, on RGB-D-T, the reduced EERs by CILC are 5.61%,
3.98% and 4.97% for RGB, depth and thermal modalities,
respectively. While the three figures achieved by CSLC are
13.99%, 10.14% and 14.89%, respectively. One reason might
be the largely suppressed noise on sorted cohort score profiles
by polynomial regression as shown in Fig. 6. Another reason
might be the small number of cohort identities included in the
cohort set. In our RGB-D-T experiments, the cohort set con-
tains 1,700 face images from only 17 cohort identities, while
in [15], the authors employed a Library of 750,000 face images
from 337 subjects. By integrating CILC into CSLC, i.e., our
proposed CLC, we do get some improvement. In Section V,
we shall discuss the necessity of CILC, by showing its com-
plementarity to CSLC for our face pair matching. Further, we
observe that the three similarity measures [sim1, sim2, sim3]
we designed lead to different performance, by combining them
together, we achieve the best performance in most cases.
Similarly, in some cases, w; and w> discovered by CSLC
produce largely different performance, however by fusing
them, we get better results than using either of them. This
demonstrates again the effectiveness of the picture-specific
cohort ordering strategy proposed in [14].

Now let us go back to Section IV-D1 about the potential of
each individual modality on matching faces. By integrating
CLC, the lowest EER (25.08%) is achieved by using the

TABLE VIII

MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS
BY USING DIFFERENT SYSTEMS ON KINECTFACEDB

Feature LBP HOG
Modality | RGB D RGB D
noCLC 43.05 | 47.62 | 44.90 | 46.11
CILCl1 36.22 | 43.11 | 38.74 | 41.88
CILC2 36.69 | 43.19 | 38.74 | 41.03
CILC3 3392 | 41.30 | 3531 | 3931
CILC 33.74 | 41.03 | 35.21 | 3947
CSLCl1 27.75 | 38.70 | 31.44 | 37.70
CSLC2 28.25 | 37.50 | 31.50 | 37.90
CSLC 27.14 | 35.68 | 29.10 | 34.43
CLC 25.08 | 3493 | 27.71 | 33.71

RGB modality with LBP on KinectFaceDB. While on the
RGB-D-T, the best performance (14.96%) is obtained by using
the thermal modality with HOG. Observe that with thermal,
using LBP achieves much higher EER (23.14%) than HOG.
This again demonstrates that HOG is more effective than LBP
for capturing temperature variations. As shown in Table IV,
using the depth modality leads to inferior performance than
RGB and T modalities on the RGB-D-T database. However,
by using CLC, we achieve the best performance (16.07%) with
depth maps when LBP is used as the facial feature.

Table VIII and Table IX show the absolute improvement on
matching performance induced by using cohort. To better eval-
uate the impact of CLC, we compute the relative improvement
of a system using cohort with respect to the performance of
the baseline system without cohort. The evaluation measure is
the relative change of EER used in [14], which is computed as:

EER — EER
rel. change of EER = cohort noCohort ™
EERoconort
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Fig. 10.

TABLE IX

MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS
BY USING DIFFERENT SYSTEMS ON RGB-D-T

Feature LBP HOG

Modality | RGB D T RGB D T
noCLC 26.72 | 31.73 | 31.57 | 30.80 | 32.26 | 30.79
CILCI 25.30 | 28.37 | 28.99 | 26.68 | 29.75 | 26.32
CILC2 2440 | 28.75 | 29.63 | 26.63 | 29.82 | 28.02
CILC3 23.98 | 28.12 | 28.42 | 25.78 | 29.09 | 26.51
CILC 23.51 | 27.49 | 28.20 | 25.19 | 28.28 | 25.82
CSLCl1 22.24 | 2848 | 27.28 | 25.65 | 30.90 | 27.62
CSLC2 22.34 | 17.54 | 30.36 | 18.53 | 23.86 | 1691
CSLC 18.90 | 16.61 | 24.64 | 16.81 | 22.12 | 15.90
CLC 1742 | 16.07 | 23.14 | 16.22 | 21.13 | 14.96

where E E Rconort 18 the EER of a system using cohort, while
EERuoconort 1s the EER of the baseline system. A nega-
tive change in the EER implies an improvement over the
baseline system. Since there are three experiments correspond-
ing to three folds, we summarize the results in a boxplot.
Fig. 10 reports the results for the three modalities on RGB-D-T
using the LBP feature. From these figures, we can clearly
observe the relative contribution of each cohort coefficient to
our pair matching task.

5) Fusion of Different Modalities: Finally, we fuse different
modalities to see the improvement achieved by our multi-
modal complementary cohort strategy. Here, m = 2 for the
KinectFaceDB database, while the value of m is 3 for the
RGB-D-T database. The results on the two databases are
listed in Table X and Table XI, respectively. By compar-
ing Table X to Table VIII, we find in most cases, using
RGB-D leads to better performance than using either of them
on KinectFaceDB. For both LBP and HOG, the best results
are obtained by our multimodal cohort strategy, i.e., RGB-D
with CLC. Their corresponding EERs are 24.31% and 27.55%.
Similarly, by comparing Table XI to Table IX, using RGB-D-T
with CLC achieves the lowest EERs, which are 12.31% and
14.16% for LBP and HOG, respectively.

V. ANALYSIS OF COHORT LIST COMPARISON

In this section, we discuss several issues involved in our
cohort investigation algorithm including its differences from

Boxplot of the relative change of EER using different systems for the three modalities on the RGB-D-T database, using LBP.

TABLE X

MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS
BY USING RGB-D oN KINECTFACEDB

noCLC | CILC | CSLC | CLC
LBP 38.00 3148 | 26.02 | 24.31
HOG | 41.07 3421 | 29.41 27.55

existing cohort algorithms and the complementarity of CILC
to CSLC for our face pair matching problem. To the best of
our knowledge, this work, for the first time, introduces cohort
investigation to multimodal face pair matching, as all the exist-
ing algorithms using cohort focus on the widely used RGB
or intensity modality. Furthermore, by incorporating CILC
(extracting cohort coefficients via sorted cohort positions)
and CSLC (extracting cohort information via sorted cohort
scores), we can comprehensively exploit the fixed cohort set.
For performing CSLC, we employ exactly the picture-specific
cohort ordering strategy proposed in [14]. When doing cohort
identity list comparison, we borrow a similar idea to the
Doppelginger list comparison developed in [15]. Next, we list
several differences between our CILC and the Doppelgédnger
list comparison.

As mentioned in Section III-A, in the Doppelginger list,
for each cohort identity, only one cohort face sample (the
closest one to the test face image) is considered to calculate
the similarity. This similarity is actually equal to our siml
in coefCI = [siml,sim2,sim3]. However, there are a
set of face images for each cohort identity in our cohort
set. Thus, each cohort identity can appear multiple times
corresponding to multiple positions in the ranked cohort list.
To compute similarity between such cohort lists, we designed
two additional algorithms resulting in another two similarity
measures sim2 and sim3. Another difference lies in the
similarity normalization. As noted in Alg. 1, for computing
all siml1, sim?2 and sim3, we employ a divisor, i.e., K x K.
By doing this, we actually perform a normalization on the
similarity. A further normalization procedure is followed by
dividing the number of accumulated contributions. There is
no such normalization operations in [15]. Besides, in their
approach, only the extracted cohort information was employed
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TABLE XI
MEAN EERS (%) OF 3-FOLD CROSS VALIDATION EXPERIMENTS BY FUSING DIFFERENT MODALITIES ON RGB-D-T

Feature LBP HOG

Modality | RGB-D | RGB-T | D-T RGB-D-T | RGB-D | RGB-T | D-T RGB-D-T

noCLC 27.01 26.28 30.37 | 26.35 31.07 30.85 30.81 | 30.85

CILC 22.66 22.11 25.04 | 21.56 24.48 23.67 24.60 | 23.31

CSLC 13.05 19.18 14.28 | 13.12 16.74 15.12 1590 | 15.18

CLC 12.39 16.95 1346 | 12.31 15.91 14.18 14.74 | 14.16
TABLE XII

CLASSIFIER OUTPUTS AND THRESHOLDS FOR THE
GENUINE AND IMPOSTOR PAIRS IN FIG. 5

Probability Threshold
System | moCLC | CILC [ CSLC | moCLC | CILC | CSLC
ePar | 0.1964 | 09230 | 0.7576
iPair | 03281 | 03593 | 00395 | 02659 | 0809 | 0.8593

for classification without the raw matching score taken into
account. We in fact incorporate coefCI into rawSC to
assist the matching. This is consistent with the notion that
the raw matching score contains much more information
to drive the matching than cohort coefficients. Finally, the
Doppelginger list is computed using a large Library including
750,000 images from 337 subjects. While in our approach,
there are only 306/324 images from 17/18 cohort subjects on
the KinectFaceDB database and 1,700 images from 17 cohort
subjects on the RGB-D-T database.

As reported in our experiments, the amount of reduced
EER achieved by CILC is much less than that brought
about by CSLC. By integrating CILC to CSLC, we observe
that cohort coefficients extracted by CILC indeed contain
some complementary information to coefCS. We take an
example for this. In Table XII, we list the output of our
logistic regression classifier on the RGB-D-T database, i.e.,
the probability of being a genuine pair for the two test pairs
in Fig. 5. Together with the classifier output, we list also
its threshold. Manifestly, a larger probability than the corre-
sponding threshold leads to a genuine pair, whereas a lower
one corresponds to an impostor pair. We use “gPair” (genuine
pair) to denote{ faceAl, faceA2} and “iPair” (impostor pair)
to represent {faceAl, faceB1}. LBP is used as the facial
feature. For the genuine pair, using the direct matching score
gets a probability of 0.1964, while the threshold is 0.5659.
Obviously, the classifier will wrongly classify it into an
impostor pair. By CILC, both the probability and the threshold
increase. However, the probability increases much more than
the threshold, leading to a higher probability than the threshold
and thus a right decision. Similarly, the probability and the
threshold increase after using CSLC, whereas the probability
does not increase enough to exceed the increased threshold,
thus resulting in still a wrong decision. For the impostor pair,
all the three systems can achieve a right decision.

VI. CONCLUSION AND FUTURE WORK

In this paper, to handle large facial variation, we addressed
the face pair matching issue by fusing different face modal-
ities. By doing this, we can reduce the impact of diverse

degrading factors, which usually affect different modalities
in different degrees, on face matching performance. For the
lack of representative information due to the few available
face images, we proposed to further exploit a cohort set for
additional information to better drive the matching. On two
recently organized multimodal face databases, we investigated
the power of each individual modality on matching faces
and the performance achieved by fusing different modalities.
Further, a set of experiments were performed to discover how
much useful information the developed cohort investigation
scheme can provide for the final matching. We observed
that with different individual modalities, we got different
face pair matching performance. By applying our multimodal
complementary cohort strategy, we obtained promising results
on both databases.

As facial biometric systems are expected to operate
under challenging conditions, fusing different modalities and
employing cohort information certainly offer two promising
alternatives to render them more robust. For taking full
advantage of different modalities, there is a great demand
for developing modality-specific facial representations. It is
equally important to design facial representations which
take into account the correlation among different modalities.
In addition, cohort coefficients discovered by CILC provide
limited information for driving the matching, as seen from
our experimental results. To better exploit cohort information
from sorted cohort identities, further research might benefit
from developing more effective similarity measures between
sorted cohort lists and employing a much larger cohort set
including large number of cohort identities.
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